Skip to main content
Log in

On the use of space-time finite elements in the solution of elasto-dynamic fracture problems

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The use of a discontinuous Galerkin (DG) formulation for the solution of dynamic fracture problems in linear elastic media with and without cohesive zones is explored. The results are compared with closed-form as well as numerical solutions available from the literature. The effectiveness of the space-time finite element method in the study of dynamic fracture problems is demonstrated, especially in those cases in which dynamic fracture occurs along with time discontinuous loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, D.H., Jones, R.H. and Boyd, J.G. Boyd: (1994). 'Micromechanical Analysis of a Continuous Fiber Metal Matrix Composite including the Effects of Matrix Viscoplasticity and Evolving Damage'. Journal of the Mechanics and Physics of Solids 42, 505–529.

    Article  Google Scholar 

  • Barenblatt, G.I.: (1962). 'The Mathematical Theory of Equilibrium Cracks in Brittle Fracture'. In: A.S. Argon (ed.): Advances in Applied Mechanics, Vol. VII. New York: Academic Press, pp. 55–129.

    Google Scholar 

  • Costanzo, F.: (1998). A continuum theory of cohesive zone models: Deformation and constitutive equations. International Journal of Engineering Science 36, 1763–1792.

    Article  MathSciNet  Google Scholar 

  • Costanzo, F.: (2001). An analysis of 3D crack propagation using cohesive zone models and the theory of configurational forces. Mathematics and Mechanics of Solids 6(2), 149–173.

    MATH  Google Scholar 

  • Costanzo, F. and Allen, D.H. (1995). A continuum thermodynamic analysis of cohesive zone models'. International Journal of Engineering Science 33, 2197–2219.

    Article  MathSciNet  Google Scholar 

  • Costanzo, F. and Huang, H. (2003). Proof of unconditional stability for a single-field discontinuous Galerkin finite element formulation for linear elastodynamics. Computer Methods in Applied Mechanics and Engineering. Submitted for publication.

  • Costanzo, F. and Walton, J.R. (1997). A study of dynamic crack growth in elastic materials using a cohesive zone model. International Journal of Engineering Science 35, 1085–1114.

    Article  MathSciNet  Google Scholar 

  • Costanzo, F. and Walton, J.R. (2002). Steady growth of a crack with a temperature sensitive cohesive zone. Journal of the Mechanics and Physics of Solids 50, 1649–1679.

    Article  MathSciNet  Google Scholar 

  • Dugdale, D.S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids 8, 100–104.

    Article  Google Scholar 

  • Fineberg, J., Gross, S.P., Marder, M. and Swinney, H.L. (1992). Instability in the propagation of fast cracks. Physical Review B 45(10), 5146–5154.

    Article  ADS  Google Scholar 

  • Fineberg, J. and Marder, M.P. (1999). Instability in dynamic fracture. Physics Reports 313, 1–108.

    Article  ADS  MathSciNet  Google Scholar 

  • Freund, L.B. (1990). Dynamic Fracture Mechanics, Cambridge monographs on mechanics and applied mathematics. Cambridge; New York: Cambridge University Press.

    Google Scholar 

  • Geubelle, P.H. and Breitenfeld, M.S. (1997). Numerical analysis of dynamic debonding under anti-plane shear loading. International Journal of Fracture 85, 265–282.

    Article  Google Scholar 

  • Geubelle, P.H. and Rice, J.R. (1995). A spectral method for three-dimensional elastodynamic fracture problems. Journal of the Mechanics and Physics of Solids 43(11), 1791–1824.

    Article  MathSciNet  Google Scholar 

  • Gurtin, M.E. (1981). An Introduction to Continuum Mechanics, Vol. 158 of Mathematics in science and engineering. New York: Academic Press.

    Google Scholar 

  • Gurtin, M.E. and Podio Guidugli, P. (1996). Configurational forces and the basic laws for crack propagation. Journal of the Mechanics and Physics of Solids 44(6), 905–927.

    Article  MathSciNet  Google Scholar 

  • Gurtin, M.E. and Shvartsman, M.M. (1997). Configurational forces and the dynamics of planar cracks in threedimensional bodies. Journal of Elasticity 48, 167–191.

    Article  MathSciNet  Google Scholar 

  • Gurtin, M.E. and Yatomi, C. (1980). On the energy release rate in elastodynamic crack propagation. Archive for Rational Mechanics and Analysis 74, 231–247.

    MathSciNet  Google Scholar 

  • Huang, H. (2002). 'A Space-Time Finite Element Method for the Modeling of Dynamic Fracture in Elastic Materials with Cohesive Zones'. Ph.d., The Pennsylvania State University.

  • Huang, H. and Costanzo, F. (2002). On the use of space-time finite elements in the solution of elasto-dynamic problems with strain discontinuities'. Computer Methods in Applied Mechanics and Engineering 191(46), 5315–5343.

    Article  MathSciNet  Google Scholar 

  • Hughes, T.J.R. and Hulbert, G.M. (1988). Space-time finite element methods for elastodynamics: Formulations and error estimates. Computer Methods in Applied Mechanics and Engineering 66(3), 339–363.

    Article  MathSciNet  Google Scholar 

  • Hulbert, G.M. and Hughes, T.J.R. (1990). Space-time finite element methods for second-order hyperbolic equations. Computer Methods in Applied Mechanics and Engineering 84(3), 327–348.

    Article  MathSciNet  Google Scholar 

  • Johnson, E. (1992). Process region influence on crack branching. International Journal of Fracture 57, R27–R29.

    Google Scholar 

  • Kanninen, M.F. and Popelar, C.H. (1985). Advanced Fracture Mechanics. New York: Oxford University Press.

    Google Scholar 

  • Kishimoto, K., Aoki, S. and Sakata, M. (1980). On the path independent J-integral. Engineering Fracture Mechanics 13, 387–394.

    Google Scholar 

  • Liu, W.K., Chang, H., Chen, J.-S. and Belytschko, T. (1988). Arbitrary langrangian-eulerian Petrov-Galerkin finite elements for nonlinear continua. Computer Methods in Applied Mechanics and Engineering 68, 259–310.

    Google Scholar 

  • Ma, C.-C. (1990). A dynamic crack model with viscous resistance to crack opening: Antiplane shear mode. Engineering Fracture Mechanics 37(1), 127–144.

    Article  Google Scholar 

  • Marder, M. (1999). Molecular dynamics of cracks. Computing in Science and Engineering 48–55.

  • Marder,M. and Gross, S.P. (1995). Origin of crack tip instabilities. Journal of the Mechanics and Physics of Solids 43, 1–48.

    Article  MathSciNet  Google Scholar 

  • Marder, M. and Liu, X. (1993). Instability in lattice fracture. Physical Review Letters 71(15), 2417–2420.

    Article  ADS  Google Scholar 

  • Nakamura, T., Shih, C.F. and Freund, L.B. (1985). Computational methods based on an energy integral in dynamic fracture. International Journal of Fracture 27, 229–243.

    Article  Google Scholar 

  • Needleman, A. (1987). A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics 54, 525–531.

    MATH  Google Scholar 

  • Nguyen, Q.S. (1981). 'A Thermodynamic Description of the Running Crack Problem'. In: S. Nemat-Nasser (ed.): Three-Dimensional Constitutive Relations and Ductile Fracture, IUTAMSymposium. Durdan: North-Holland Publishing Company International Union of Theoretical and Applied Mechanics (IUTAM), pp. 315–330.

  • Nishioka, T. and Atluri, S.N. (1983). Path-independent integrals, energy release rates, and general solutions of near-tip fields in mixed-mode dynamic fracture mechanics. Engineering Fracture Mechanics 18(1), 1–22.

    Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1994). Numerical Recipes in FORTRAN-2nd Edition. Cambridge: Cambridge University Press.

    Google Scholar 

  • Siegmund, T., Fleck, N.A. and Needleman, A. (1997). Dynamic crack growth across an interface. International Journal of Fracture 85, 381–402.

    Article  Google Scholar 

  • Xu, X.-P. and Needleman, A. (1994). nNumerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids 42(9), 1397–1434.

    Article  Google Scholar 

  • Xu, X.-P. and Needleman, A. (1996). Numerical simulation of dynamic crack growth along an interface'. International Journal of Fracture 74, 289–324.

    Article  Google Scholar 

  • Yang, B. and Ravi-Chandar, K. (1996). On the role of the process zone in dynamic fracture. Journal of the Mechanics and Physics of Solids 44, 1955–1976.

    Article  Google Scholar 

  • Zhou, S.J., Lomdahl, P.S., Thomson, R. and Holian, B.L. (1995). Dynamic crack processes via molecular dynamics. Technical Report LA-UR-95-3721, Los Alamos National Laboratory.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H., Costanzo, F. On the use of space-time finite elements in the solution of elasto-dynamic fracture problems. International Journal of Fracture 127, 119–146 (2004). https://doi.org/10.1023/B:FRAC.0000035071.30893.bb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FRAC.0000035071.30893.bb

Navigation