Skip to main content
Log in

There Is No Basis Ambiguity in Everett Quantum Mechanics

  • Published:
Foundations of Physics Letters

Abstract

The Everett-interpretation description of isolated measurements, i.e., measurements involving interaction between a measuring apparatus and a measured system but not interaction with the environment, is shown to be unambiguous, claims in the literature to the contrary notwithstanding. The appearance of ambiguity in such measurements is engendered by the fact that, in the Schrödinger picture, information on splitting into Everett copies must be inferred from the history of the combined system. In the Heisenberg picture this information is contained in mathematical quantities associated with a single time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Everett III, “\lsRelative state\rs formulation of quantum mechanics,” Rev. Mod. Phys. 29, 454–462 (1957); reprinted in [2].

    Article  ADS  MathSciNet  Google Scholar 

  2. B. S. DeWitt and N. Graham, eds., The Many Worlds Interpretation of Quantum Mechanics (Princeton University, Princeton, NJ, 1973).

    Google Scholar 

  3. M. C. Price, “The Everett FAQ,” http://www.hedweb.com/manworld.htm (1995).

  4. L. Vaidman, “Many-worlds interpretation of quantum mechanics,” in Stanford Encyclopedia of Philosophy (Summer 2002 edn.), E. N. Zalta, ed.; http://plato.stanford.edu/archives/sum2002/entries/qm-manyworlds.

  5. W. H. Zurek, “Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?,” Phys. Rev. D 24, 1516–1525 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  6. W. H. Zurek, “Environment-induced superselection rules,” Phys. Rev. D 26, 1862–1880 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  7. H. P. Stapp, “The basis problem in many-worlds theories,” Can. J. Phys. 86, 1043–1052 (2002); quant-ph/0110148.

    Article  ADS  Google Scholar 

  8. W. H. Zurek, “Decoherence and the transition from quantum to classical\3-revisited,” Los Alamos Science 27, 2–25 (2002); quant-ph/0306072.

    Google Scholar 

  9. J. Barrett, “Everett's relative-state formulation of quantum mechanics”, in Stanford Encyclopedia of Philosophy (Spring 2003 Edition), E. N. Zalta, ed.; http://plato.stanford.edu/archives/spr2003/entries/qm-everett/.

  10. W. H. Zurek, “Quantum Darwinism and envariance,” quant-ph/0308163 (2003).

  11. B. DeWitt, “The quantum mechanics of isolated systems,” Int. J. Mod. Phys. A 13, 1881–1916 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. B. S. DeWitt, “The many-universes interpretation of quantum mechanics,” in Proceedings of the International School of Physics “Enrico Fermi” Course IL: Foundations of Quantum Mechanics (Academic Press, New York, 1972). Reprinted in [2].

    Google Scholar 

  13. L. E. Ballentine, “Can the statistical postulate of quantum theory be derived?\3-a critique of the many-universes interpretation,” Found. Phys. 3, 229–240 (1973).

    Article  ADS  Google Scholar 

  14. L. Vaidman, “On schizophrenic experiences of the neutron or why we should believe in the many-worlds interpretation of quantum theory,” Int. Stud. Phil. Sci. 12, 245–261 (1998); quant-ph/9609006.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Deutsch, and P. Hayden, “Information flow in entangled quantum systems,” Proc. R. Soc. Lond. A 456, 1759–1774 (2000); quant-ph/9906007.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. M. A. Rubin, “Locality in the Everett interpretation of Heisenberg-picture quantum mechanics,” Found. Phys. Lett. 14, 301–322 (2001); quant-ph/0103079.

    Article  MathSciNet  Google Scholar 

  17. M. A. Rubin, “Relative frequency and probability in the Everett interpretation of Heisenberg-picture quantum mechanics,” Found. Phys. 33, 379–405 (2003); quant-ph/0209055.

    Article  MathSciNet  Google Scholar 

  18. B. d'Espagnat, Conceptual Foundations of Quantum Mechanics, 2nd edn. (Benjamin, Reading, MA, 1976).

    Google Scholar 

  19. C. Kiefer and E. Joos, “Decoherence: Concepts and Examples,” in P. Blanchard and A. Jadczyk, eds., Quantum Future (Springer, Berlin, 1998); quant-ph/9803052.

    Google Scholar 

  20. M. A. Rubin, “Locality in the Everett interpretation of quantum field theory,” Found. Phys. 32, 1495–1523 (2002); quant-ph/0204024.

    Article  MathSciNet  Google Scholar 

  21. E. Joos and H. D. Zeh, “The emergence of classical properties through interaction with the environment,” Z. Phys. B59, 223–243 (1985).

    Article  ADS  Google Scholar 

  22. K. Hornberger and J. E. Sipe, “Collisional decoherence reexamined,” Phys. Rev. A 68, 012105 (2003); quant-ph/0303094.

    Article  ADS  Google Scholar 

  23. K. Hornberger, S. Uttenhaler, B. Brezger, L. Hackermueller, M. Arndt and A. Zeilinger, “Collisional decoherence observed in matter wave interferometry,” Phys. Rev. Lett. 90, 160401 (2003); quant-ph/0303093.

    Article  ADS  Google Scholar 

  24. L. Hackermueller, K. Hornberger, B. Brezger, A. Zeilinger, and M. Arndt, “Decoherence in a Talbot-Lau interferometer: the influence of molecular scattering,” Appl. Phys. B 77, 781–787 (2003); quant-ph/0307238.

    Article  ADS  Google Scholar 

  25. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (University Press, Cambridge, 2000).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, M.A. There Is No Basis Ambiguity in Everett Quantum Mechanics. Found Phys Lett 17, 323–341 (2004). https://doi.org/10.1023/B:FOPL.0000035668.37005.e0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FOPL.0000035668.37005.e0

Navigation