Skip to main content
Log in

Investigations on structure of regioselectively functionalized celluloses ID solution exemplified by using 3-β-alkyl ethers and light scattering

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Regioselectively functionalized 3-β-alkyl ethers of cellulose (alkyl =β-pentyl, isopentyl, dodecyl) can be synthesized using 2,6-di-β-thexyldimethylsilyl cellulose as a protected intermediate. ID comparison to the corresponding 2,3,6-tri-β-alkyl ethers, the dissolution behavior and the structure ID solution of the 3-β-alkyl ethers were investigated using light scattering. The aim of the paper ID to present the first experimental and systematic work on specific properties of regioselectively modified celluloses. The results of structure investigation ID solution are discussed ID detail and lead to a primary understanding of interactions of this type of cellulosics on a molecular and supramolecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berne B.J. and Pecora R. 1976. Dynamic Light Scattering. Wiley, London.

    Google Scholar 

  • Berry G.C. 1966. Thermodynamic and conformational properties of polystyrene. ID Light scattering studies of linear polystyrene. J. Chem. Phys. 44: 4550-4564.

    Google Scholar 

  • Burchard W. 1978. Light scattering technique. ID: Happey F. (ed.), Applied Fibre Science. Academic Press, London, Chapter 10, pp. 381-420.

    Google Scholar 

  • Burchard W. 1983. Static and dynamic light scattering from branched polymers and biopolymers. Adv. Polym. Sci. 48: 1-124.

    Google Scholar 

  • Burchard W. 1994. ID: Ross-Murphy S.B. (ed.), Physical Techniques for the Study of Food Biopolymers, Light Scattering Techniques. Blackie Academic & Professional, London, Chapter 4, pp. 154-213.

    Google Scholar 

  • Burchard W. 2000. Structure of cellulose ID solution. Macromol. Chem. Phys. 201: 2008-2022.

    Google Scholar 

  • Burchard W. and Schmidt M. 1979. The diffusion coefficient of branched polyvinylacetate microgels measured by quasielastic light scattering. Ber. Bunsenges. Phys. Chem. 83: 388-391.

    Google Scholar 

  • Burchard W. and Schulz L. 1989. Lösungsstruktur von cellulose 2.5 acetaten. Das Papier 43: 665-673.

    Google Scholar 

  • Burchard W., Schmidt M. and Stockmayer W.H. 1980. Information on polydispersity and branching from combined quasi-elastic and integrated light scattering. Macromolecules 13: 1265-1272.

    Google Scholar 

  • Burchard W., Habermann N., Klüfers P., Seger B. and Wilhelm U. 1994. Cellulose ID Schweizer's reagent: a stable polymer complex with high chain stiffness. Angew. Chem. 106: 936-939.

    Google Scholar 

  • Burger G., Kettenbach G. and Klüfers P. 1995. Coordinating equilibria ID transient metal based cellulose solvents. Macromol. Symp. 99: 113-126.

    Google Scholar 

  • Dawsey T.R. and McCormick C.L. 1990. The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. JMS-Rev. Macromol. Chem. Phys. C30: 405-440.

    Google Scholar 

  • Einfeldt L., Petzold K., Günther W., Stein A., Kussler M. and Klemm D. 2001. Preparative and 1H NMR investigation on regioselective silylation of starch dissolved ID dimethylsulfoxide. Macromol. Biosci. 1(8): 341-347.

    Google Scholar 

  • Flory P.J. 1953. Principles of Polymer Chemistry. Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Gagnaire D., Saint-Germain J. and Vincedon M. 1983. NMR evidence of hydrogen bonds ID cellulose. J. Appl. Polym. Sci. Appl. Polym. Symp. 37: 261-275.

    Google Scholar 

  • Guinier A. 1939. La diffration des la rayon x aux très petits Angles. Ph.D. Thesis, University of Paris.

  • Guinier A. and Fournet G. 1955. Small Angle Scattering of X-Rays. Wiley, New York.

    Google Scholar 

  • Helfrich B. and Koester H. 1924. Äther des Triphenyl-carbinols mit cellulose und Stärke. Berichte 57: 587-591.

    Google Scholar 

  • Huglin M.B. 1972. Light Scattering from Polymer Solutions. Academic Press, London.

    Google Scholar 

  • Jeffrey G.A. and Saenger W. 1994. Hydrogen Bonding ID Biological Structures. Springer Verlag, Berlin.

    Google Scholar 

  • Kamide K. and Saito L. 1987. Cellulose and cellulose derivatives; recent advances ID physical chemistry. Adv. Polym. Sci. 83: 1-56.

    Google Scholar 

  • Kamide K., Saito M., Kowsaka K. and Okajima K. 1987a. A further study on solvation ID cellulose triacetate solutions by pulse-Fourier 1H and 13C NMR method. Polymer J. 19: 1377-1383.

    Google Scholar 

  • Kamide K., Okajima K., Kowsaka K. and Matsui T. 1987b. Solubility of cellulose acetate prepared by different methods and its correlations with average acetyl group distribution on glucopyranose units. Polymer J. 19: 1405-1412.

    Google Scholar 

  • Kettenbach G., Klüfers P. and Mayer P. 1997. Deprotonation pattern of disaccharides ID coordinating cellulose solvents: a status report. Macromol. Symp. 120: 291-301.

    Google Scholar 

  • Klemm D. and Einfeldt L. 2001. Structure design of polysaccharides: novel concepts, selective syntheses, high value application. Macromol. Symp. 163: 35-47.

    Google Scholar 

  • Klemm D., Philipp B., Heinze T., Heinze U. and Wagenknecht W. 1998. Comprehensive Cellulose Chemistry, 1st edn, Vol. 2. Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  • Kondo T. 1993. Preparation of 6-β-alkylcelluloses. Carbohydr. Res. 238: 231-240.

    Google Scholar 

  • Kondo T. 1997. The relationship between intramolecular hydrogen bonds and certain physical properties of regioselectively substituted cellulose derivatives. J. Polym. Sci. B: Polym. Phys. 35: 717-723.

    Google Scholar 

  • Kondo T. and Gray D.G. 1991. The preparation of β-methyland β-ethyl-celluloses having controlled distribution of substituents. Carbohydr. Res. 220: 173-183.

    Google Scholar 

  • Kondo T. and Gray D.G. 1992. Facile method for preparation of tri-β-(alkyl)cellulose. J. Appl. Polym. Sci. 45: 417-423.

    Google Scholar 

  • Koppel D.E. 1972. Analysis of macromolecular polydispersity ID intensity correlation spectroscopy. The method of cumulants. J. Chem. Phys. 57: 4814-4820.

    Google Scholar 

  • Koschella A., Heinze T. and Klemm D. 2001. First synthesis of 3-β-functionalized cellulose ethers via 2,6-di-β-protected silyl cellulose. Macromol. Biosci. 1: 49-54.

    Google Scholar 

  • Nilsson S., Thuresson K., Lindman B. and Nyström B. 2000. Association ID mixtures of hydrophobically modified polymer and surfactant ID dilute and semidilute aqueous solutions. A rheology and PFG NMR self-diffusion investigation. Macromolecules 33: 9641-9649.

    Google Scholar 

  • Perrin F. 1936. Mouvement Brownien d'un ellipsoide, ID. Ratation libre et dépolarisation des fluoerescences. Translation et diffusion de molécules ellipsoides. J. Phys. Radium 7: 1-11.

    Google Scholar 

  • Petzold K., Einfeldt L., Günther W., Stein A. and Klemm D. 2001. Regioselective functionalization of starch: synthesis and 1H NMR characterization of 6-β silylethers. Biomacromolecules 2(3): 965-969.

    Google Scholar 

  • Pfannemueller B. and Berg A. 1979a. Chemical synthesis of branched polysaccharides. 7. A study of degradation of polysaccharide backbone on introducing glycosidic bonds. Macromol. Chem. 180: 1183-1199.

    Google Scholar 

  • Pfannemueller B. and Berg A. 1979b. Chemical synthesis of branched polysaccharides. 8. Comparative studies on derivatives of amylose and cellulose with different substituents at C-6 by optical rotatory dispersion and circular dichroism. Macromol. Chem. 180: 1201-1213.

    Google Scholar 

  • Pfannemüller B., Richter G.C. and Husemann E. 1975. Synthesis of comb-like derivatives of amylose and cellulose having (1,6)-linked D-glucose side-chains. Carbohydr. Res. 43: 151-161.

    Google Scholar 

  • Potthast A., Rosenau T., Buchner R., Roeder T., Ebner G., Bruglachner H., Sixta H. and Kosma P. 2002. The cellulose solvent N,N-dimethylacetaminide/lithium chloride revisited: the effect of water on physico-chemical properties and chemical stability. Cellulose 9: 41-53.

    Google Scholar 

  • Pusey P.N., Koppel D.E., Schaefer D.W., Cameini-Otero R.D. and Koenig S.H. 1974. Intensity fluctuation spectroscopy of laser light scattered by solutions of spherical viruses: R 17, Q beta, BSV, PM 2, and T 7. ID Light-scattering technique. Biochemistry 13: 952-960.

    Google Scholar 

  • Riseman J. and Kirkwood J.G. 1950. The intrinsic viscosity, translational and rotatory diffusion constants of rod-like macromolecules ID solution. J. Chem. Phys. 19: 512-528.

    Google Scholar 

  • Russo P.S. 1993. Dynamic light scattering from rigid and nearly rigid rods. ID: Brown W. (ed.), Dynamic Light Scattering. Clarendon Press, Oxford, UK.

    Google Scholar 

  • Saalwächter K., Burchard W., Klüfers P., Dugarmaa S. and Klemm D. 2000. Cellulose solutions ID water containing metal complexes. Macromolecules 33: 4094-4107.

    Google Scholar 

  • Schmidt M., Nerger D. and Burchard W. 1979. Quasi-elastic light scattering from branched polyvinylacetate and polyvinylacetate microgels. Polymer 20: 582-588.

    Google Scholar 

  • Schulz L. and Burchard W. 1993. Lösungsstruktur verschiedener cellulosederivate. Das Papier 47: 1-10.

    Google Scholar 

  • Schulz L., Burchard W. and Dönges R. 1996. Evidence of supramolecular structures of cellulose derivatives ID solution. ID: Heinze T.J. and Glasser W.G. (eds), Cellulose Derivatives: Modification, Characterization and Nanostructures. ACS Symposium Series, Vol. 688, pp. 218-238.

  • Schulz L., Seger B. and Burchard W. 2000. Structure of cellulose ID solution. Macromol. Chem. Phys. 201: 2008-2022.

    Google Scholar 

  • Thuresson K. and Lindman B. 1999. Association ID nonionic cellulose ether solutions due to microcrystallites. Colloids and Surfaces A: Physicochemical and Engineering Aspects 159: 219-226.

    Google Scholar 

  • Zimm B.H. 1948. Apparatus and methods for measurement and interpretation of the angular variation of light scattering. J. Chem. Phys. 16: 1099-1116.

    Google Scholar 

  • Zugenmaier P. 1983. Structural investigations on cellulose derivatives. J. Appl. Polym. Sci. Appl. Polym. Symp. 37: 223-238.

    Google Scholar 

  • Zugenmaier P. 1985. ID: Burchard W. (ed.), Polysaccharide, Konformations-und Packungsanalyse von Polysacchariden. Springer Verlag, Berlin, Germany, pp. 260-279.

    Google Scholar 

  • Zugenmaier P. 1989. Neuere ergebnisse von strukturuntersuchungen an kristallinen und flüssigkristallinen cellulose-und cellulosederivaten. Das Papier 43: 658-664.

    Google Scholar 

  • Zugenmaier P. and Klohr E. 1997. Polymer-solvent interaction of molecular dispersed and supramolecular structures of cellulose urethanes. Macromol. Symp. 120: 219-230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petzold, K., Klemm, D., Heublein, B. et al. Investigations on structure of regioselectively functionalized celluloses ID solution exemplified by using 3-β-alkyl ethers and light scattering. Cellulose 11, 177–193 (2004). https://doi.org/10.1023/B:CELL.0000025391.25835.e7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CELL.0000025391.25835.e7

Navigation