Skip to main content
Log in

Microscale Transport and Sorting by Kinesin Molecular Motors

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

As biomolecular detection systems shrink in size, there is an increasing demand for systems that transport and position materials at micron- and nanoscale dimensions. Our goal is to combine cellular transport machinery—kinesin molecular motors and microtubules—with integrated optoelectronics into a hybrid biological/engineered microdevice that will bind, transport, and detect specific proteins, DNA/RNA molecules, viruses, or cells. For microscale transport, 1.5 μm deep channels were created with SU-8 photoresist on glass, kinesin motors adsorbed to the bottom of the channels, and the channel walls used to bend and redirect microtubules moving over the immobilized motors. Novel channel geometries were investigated as a means to redirect and sort microtubules moving in these channels. We show that DC and AC electric fields are sufficient to transport microtubules in solution, establishing an approach for redirecting microtubules moving in channels. Finally, we inverted the geometry to demonstrate that kinesins can transport gold nanowires along surface immobilized microtubules, providing a model for nanoscale directed assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.D. Allen, N.S. Allen, and J.L. Travis, Cell Motil 1, 291 (1981).

    Google Scholar 

  2. S.B. Asokan, L. Jawerth, R.L. Carroll, R.E. Cheney, S. Washburn, and R. Superfine, Nano Letters 3, 431 (2003).

    Google Scholar 

  3. T.B. Brown and W.O. Hancock, Nano Letters 2, 1131 (2002).

    Google Scholar 

  4. J. Clemmens, H. Hess, J. Howard, and V. Vogel, Langmuir 19, 1738 (2003).

    Google Scholar 

  5. D.L. Coy, M. Wagenbach, and J. Howard, J. Biol. Chem. 274, 3667 (1999).

    Google Scholar 

  6. J.R. Dennis, J. Howard, and V. Vogel, Nanotechnology 10, 232 (1999).

    Google Scholar 

  7. R.W. Fitzgerald, Mechanics of Materials (Addison-Wesley, Reading, MA, 1982), p. 554.

    Google Scholar 

  8. F. Gittes, B. Mickey, J. Nettleton, and J. Howard, J. Cell. Biol. 120, 923 (1993).

    Google Scholar 

  9. D.D. Hackney, Proc. Natl. Acad. Sci. (USA) 85, 6314 (1988).

    Google Scholar 

  10. W.O. Hancock and J. Howard, J. Cell. Biol. 140, 1395 (1998).

    Google Scholar 

  11. H. Hess, J. Clemmens, D. Qin, J. Howard, and V. Vogel, Nano Letters 1, 235 (2001).

    Google Scholar 

  12. Y. Hiratsuka, T. Tada, K. Oiwa, T. Kanayama, and T.Q. Uyeda, Biophys. J. 81, 1555 (2001).

    Google Scholar 

  13. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Inc., Sunderland, MA, 2001).

    Google Scholar 

  14. J. Howard, A.J. Hudspeth, and R.D. Vale, Nature 342, 154 (1989).

    Google Scholar 

  15. J. Howard, A.J. Hunt, and S. Baek, Methods Cell. Biol. 39, 137 (1993).

    Google Scholar 

  16. M.P. Hughes, Electrophoresis 23, 2569 (2002).

    Google Scholar 

  17. A. Hyman, D. Drechsel, D. Kellogg, S. Salser, K. Sawin, P. Steffen, L. Wordeman, and T. Mitchison, Methods Enzymol. 196, 478 (1991).

    Google Scholar 

  18. T.B. Jones, Electromechanics of Particles (Cambridge University Press, 1995).

  19. N.I. Kovtyukhova and T.E. Mallouk, Chemistry 8, 4354 (2002).

    Google Scholar 

  20. L. Limberis and R.J. Stewart, Nanotechnology 11, 47 (2000).

    Google Scholar 

  21. J. Lowe, H. Li, K.H. Downing, and E. Nogales, J. Mol. Biol. 313, 1045 (2001).

    Google Scholar 

  22. S.A. Marras, F.R. Kramer, and S. Tyagi, Genet. Anal. 14, 151 (1999).

    Google Scholar 

  23. B.R. Martin, D.J. Dermody, B.D. Reiss, M. Fang, L.A. Lyon, M.J. Natan, and T.E. Mallouk, Adv. Mater. 11, 1021 (1999).

    Google Scholar 

  24. J.K.N. Mbindyo, B.D. Reiss, B.R. Martin, C.D. Keating, M.J. Natan, and T.E. Mallouk, Adv. Mater. 13, 249 (2001).

    Google Scholar 

  25. E. Meyhöfer and J. Howard, Proc. Natl. Acad. Sci. (USA) 92, 574 (1995).

    Google Scholar 

  26. R.D. Miller and T.B. Jones, Biophys. J. 64, 1588 (1993).

    Google Scholar 

  27. S.G. Moorjani, L. Jia, T.N. Jackson, and W.O. Hancock, Nano Letters 3, 633 (2003).

    Google Scholar 

  28. H. Morgan, M.P. Hughes, and N.G. Green, Biophys. J. 77, 516 (1999).

    Google Scholar 

  29. E. Nogales, M. Whittaker, R.A. Milligan, and K.H. Downing, Cell 96, 79 (1999).

    Google Scholar 

  30. R.a.M. Pethig, G.H. Markx, Trends in Biotechnology 15, 426 (1997).

    Google Scholar 

  31. H.A. Pohl, Dielectrophoresis: The Behavior of Neutral Matter in Non-Uniform Electric Fields (Cambridge University Press, 1978).

  32. B. Razavi, B.R. Martin, S.K. St. Angelo, T.E. Mallouk, and T.N. Jackson, 44th Electronic Materials Conference Digest (2002).

  33. M. Schena, D. Shalon, R.W. Davis, and P.O. Brown, Science 270, 467 (1995).

    Google Scholar 

  34. M.J. Schnitzer, K. Visscher, and S.M. Block, Nat. Cell. Biol. 2, 718 (2000).

    Google Scholar 

  35. R. Stracke, K.J. Bohm, J. Burgold, H.-J. Schacht, and E. Unger, Nanotechnology 11, 52 (2000).

    Google Scholar 

  36. R. Stracke, K.J. Bohm, L. Wollweber, J.A. Tuszynski, and E. Unger, Biochem. Biophys. Res. Commun. 293, 602 (2002).

    Google Scholar 

  37. K. Svoboda, C.F. Schmidt, B.J. Schnapp, and S.M. Block, Nature 365, 721 (1993).

    Google Scholar 

  38. R.D. Vale, B.J. Schnapp, T.S. Reese, and M.P. Sheetz, Cell 40, 559 (1985).

    Google Scholar 

  39. M. Washizu, S. Suzuki, O. Kurosawa, T. Nishizaka, and T. Shinohara, IEEE Transactions on Industry Applications 30, 835 (1994).

    Google Scholar 

  40. R.C. Williams, Jr. and J.C. Lee, Methods Enzymol. 85 Pt B, 376 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William O. Hancock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, L., Moorjani, S.G., Jackson, T.N. et al. Microscale Transport and Sorting by Kinesin Molecular Motors. Biomedical Microdevices 6, 67–74 (2004). https://doi.org/10.1023/B:BMMD.0000013368.89455.8d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BMMD.0000013368.89455.8d

Navigation