Skip to main content
Log in

Simulation of Meteorological Fields Within and Above Urban and Rural Canopies with a Mesoscale Model

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Accurate simulation of air quality at neighbourhood scales (on order of 1-km horizontal grid spacing) requires detailed meteorological fields inside the roughness sub-layer (RSL). Since the assumptions of the roughness approach, used by most of the mesoscale models, are unsatisfactory at this scale, a detailed urban and rural canopy parameterisation, called DA-SM2-U, is developed inside the Penn State/NCAR Mesoscale Model (MM5) to simulate the meteorological fields within and above the urban and rural canopies. DA-SM2-U uses the drag-force approach to represent the dynamic and turbulent effects of the buildings and vegetation, and a modified version of the soil model SM2-U, called SM2-U(3D), to represent the thermodynamic effects of the canopy elements. The turbulence length scale is also modified inside the canopies. SM2-U(3D) assesses the sensible and latent heat fluxes from rural and urban surfaces in each of the computational layers inside the canopies by considering the shadowing effect, the radiative trapping by the street canyons, and the storage heat flux by the artificial surfaces. DA-SM2-U is tested during one simulated day above the city of Philadelphia, U.S.A. It is shown that DA-SM2-U is capable of simulating the important features observed in the urban and rural RSL, as seen in the vertical profiles of the shear stress, turbulent kinetic energy budget components, eddy diffusivity, potential air temperature, and specific humidity. Within the canopies, DA-SM2-U simulates the decrease of the wind speed inside the dense canopies, the skirting of the flow around the canopy blocks, warmer air inside the vegetation canopy than above open areas during the night and conversely during the day, and constantly warmer air inside the urban canopy. The comparison with measurements shows that the surface air temperature above rural and urban areas is better simulated by DA-SM2-U than by the `standard version' of MM5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballard, S. P., Golding, B.W., and Smith, R. N. B.: 1991, 'Mesoscale Model Experimental Forecasts of the Haar of Northeast Scotland', Mon. Wea. Rev.119, 2107–2123.

    Article  Google Scholar 

  • Bélair, S., Lacarrère, P., Noilhan, J., Masson, V., and Stein, J.: 1998, 'High-Resolution Simulation of Surface and Turbulent Fluxes during HAPEX-MOBILHY' Mon. Wea. Rev.126, 2234–2253.

    Article  Google Scholar 

  • Bélair, S., Mailhot, J., Strapp, J. W., and MacPherson, J. I.: 1999, 'An Examination of Local versus Nonlocal Aspects of a TKE-Based Boundary Layer Scheme in Clear Convective Conditions', J. Appl. Meteorol.38, 1499–1518.

    Article  Google Scholar 

  • Bougeault, P. and Lacarrère, P.: 1989, 'Parameterization of Orography-Induced Turbulence in a Mesobeta-Scale Model', Mon. Wea. Rev.117, 1872–1890.

    Article  Google Scholar 

  • Brown, M. J: 2000, 'Urban Parameterizations for Mesoscale Meteorological Models', in Z. Boybeyi (ed.), Mesoscale Atmospheric Dispersion, Wessex Press, 448 pp.

  • Brunet, Y., Finnigan, J. J., and Raupach, M. R.: 1994, 'A Wind Tunnel Study of Air Flow in Waving Wheat: Single-Point Velocity Statistics', Boundary-Layer Meteorol.70, 95–132.

    Google Scholar 

  • Ca, V. T., Ashie, Y., and Asaeda, T.: 2002, 'A k- eTurbulence Closure Model for the Atmospheric Boundary Layer Including Urban Canopy', Boundary-Layer Meteorol.102, 459–490.

    Article  Google Scholar 

  • Denmead, O. T.: 1964, 'Evaporation Sources and Apparent Diffusivities in a Forest Canopy', J. Appl.Meteorol. 3, 383–389.

    Article  Google Scholar 

  • Dupont, S.: 2001, Modélisation dynamique et thermodynamique de la canopée urbaine: réalisation du modèle de sols urbains pour SUBMESO, Doctoral thesis, Université de Nantes, France.

  • Dupont, S., Calmet, I., and Mestayer, P. G.: 2002, 'Urban Canopy Modeling Influence on Urban Boundary Layer Simulation', in AMS 4th Symposium on Urban Environment, Norfolk, Virginia, 20-24 May 2002, Proceedings, pp. 151–152.

  • Ellefsen, R.: 1990-1991, 'Mapping and Measuring Buildings in the Canopy Boundary Layer in Ten U.S. Cities', Energ. Buildings 15-16, 1025–1049.

    Google Scholar 

  • Finnigan, J. J.: 2000, 'Turbulence in Plant Canopies', Annu. Rev. Fluid. Mech.32, 519–571.

    Article  Google Scholar 

  • Green, S. R.: 1992, 'Modelling Turbulent Air Flow in a Stand of Widely-Spaced Trees', PHOENICS J. Comp. Fluid. Dyn. Appl. 5, 294–312.

  • Grell, G., Dudhia, J., and Stauffer, D. R.: 1994, A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5), NCAR/TN-398+STR, 138 pp.

  • Grimmond, C. S. B. and Oke, T. R.: 1999, 'Heat Storage in Urban Areas: Local-Scale Observations and Evaluation of a Simple Model', J. Appl. Meteorol.38, 922–940.

    Article  Google Scholar 

  • Guilloteau, E.: 1998, 'Optimized Computation of Transfer Coefficients in Surface Layer with Different Momentum and Heat Roughness Lengths', Boundary-Layer Meteorol.87, 147–160.

    Article  Google Scholar 

  • Hamlyn, G. J.: 1992, Plants and Microclimates, a Quantitative Approach to Environmental Plant Physiology, Cambridge University Press, U.K., 428 pp.

    Google Scholar 

  • Inclan, M. G., Forkel, R., Dlugi, R., and Stull, R. B.: 1996, 'Application of Transilient Turbulent Theory to Study Interactions between the Atmospheric Boundary Layer and Forest Canopies', Boundary-Layer Meteorol.79, 315–344.

    Google Scholar 

  • Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows. Their Structure and Measurements, Oxford University Press, New York, 289 pp.

    Google Scholar 

  • Kanda, M. and Hino, M.: 1994, 'Organized Structures in Developing Turbulent Flow within and above a Plant Canopy, Using a Large Eddy Simulation', Boundary-Layer Meteorol.68, 237–257.

    Google Scholar 

  • Kastner-Klein, P.: 2001, 'Overview of Near-Surface Turbulence Parameterizations', in Preprint COST 715 Workshop on Urban Boundary Layer Parameterizations, Zurich, May 24/25.

  • Khan, S. M. and Simpson, R. W.: 2001, 'Effect of a Heat Island on the Meteorology of a Complex Urban Airshed', Boundary-Layer Meteorol.100, 487–506.

    Article  Google Scholar 

  • Kimura, F. and Takahashi, S.: 1991, 'The Effects of Land-Use and Anthropogenic Heating on the Surface Temperature in the Tokyo Metropolitan Area: A Numerical Experiment', Atmos. Environ.25B, 155–164.

    Google Scholar 

  • Lacser, A. and Otte, T. L.: 2002, 'Implementation of an Urban Canopy Parameterization in MM5', Preprints, in Fourth Symposium on Urban Environment, American Meteorological Society, Norfolk, VA, pp. 153–154.

    Google Scholar 

  • Leclerc, M. Y., Beissner, K. C., Shaw, R. H., Hartog, G. D., and Neumann, H. H.: 1990, 'The Influence of Atmospheric Stability on the Budgets of the Reynolds Stress and Turbulent Kinetic Energy within and above a Deciduous Forest', J. Appl. Meteorol.29, 916–933.

    Article  Google Scholar 

  • Liu, J., Chen, J. M., Black, T. A., and Novak, M. D.: 1996, 'k- eModelling of Turbulent Air Flow Downwind of a Model Forest Edge', Boundary-Layer Meteorol.77, 21–44.

    Google Scholar 

  • Louka, P., Belcher, S. E., and Harrison, R. G.: 2000, 'Coupling between Air Flow in Streets and the Well Developed Boundary Layer Aloft', Atmos. Environ.34, 2613–2621.

    Article  Google Scholar 

  • Martilli, A., Clappier, A., and Rotach, M. W.: 2002, 'An Urban Surface Exchange Parameterisation for Mesoscale Models', Boundary-Layer Meteorol.104, 261–304.

    Article  Google Scholar 

  • Masson, V.: 2000, 'A Physically-Based Scheme for the Urban Energy Budget in Atmospheric Models', Boundary-Layer Meteorol.94, 357–397.

    Article  Google Scholar 

  • Meyers, T. and U, K. T. P.: 1986, 'Testing of a Higher-Order Closure Model for Modeling Airflow within and above Plant Canopies', Boundary-Layer Meteorol.37, 297–311.

    Google Scholar 

  • Musson-Genon, L.: 1987, 'Numerical Simulation of a Fog Event with a One-Dimensional Boundary Layer Model', Mon. Wea. Rev.115, 592–605.

    Article  Google Scholar 

  • Ni, W.: 1997, 'A Coupled Transilience Model for Turbulent Air Flow within Plant Canopies and the Planetary Boundary Layer', Agric. For. Meteorol.89, 77–105.

    Article  Google Scholar 

  • Noilhan, J. and Planton, S.: 1989, 'A Simple Parameterization of the Land Surface Processes for Meteorological Models', Mon. Wea. Rev.117, 536–549.

    Article  Google Scholar 

  • Oikawa, S. and Meng, Y.: 1995, 'Turbulence Characteristics and Organised Motions in a Suburban Roughness Sublayer', Boundary-Layer Meteorol.74, 289–312.

    Google Scholar 

  • Oke, T. R.: 1978, Boundary Layer Climates, Methuen and Co. Ltd., U.K., 435 pp.

    Google Scholar 

  • Oke, T. R.: 1995, 'The Heat Island of the Urban Boundary Layer: Characteristics, Causes and Effects', in J. E. Cermak et al. (eds.), Wind Climate in Cities, Kluwer Academic Publishers, Dordrecht, pp. 81–107.

    Google Scholar 

  • Raupach, M. R. and Shaw, R. H.: 1982, 'Averaging Procedures for Flow within Vegetation Canopies', Boundary-Layer Meteorol.22, 79–90.

    PubMed  Google Scholar 

  • Raupach, M. R., Antonia, R. A., and Rajagoplan, S.: 1991, 'Rough-Wall Turbulent Boundary Layers', Appl. Mech. Rev.44, 1–25.

    Google Scholar 

  • Raupach, M. R., Coppin, P. A., and Legg, B. J.: 1986, 'Experiments on Scalar Dispersion within a Model Plant Canopy. Part I: The Turbulence Structure', Boundary-Layer Meteorol.35, 21–52.

    Google Scholar 

  • Raupach, M. R., Finnigan, J. J., and Brunet, Y.: 1996, 'Coherent Eddies and Turbulence in Vegetation Canopies: the Mixing-Layer Analogy', Boundary-Layer Meteorol.78, 351–382.

    Google Scholar 

  • Rotach, M. W.: 1993, 'Turbulence Close to a Rough Urban Surface. Part I: Reynolds Stress', Boundary-Layer Meteorol.65, 1–28.

    Google Scholar 

  • Rotach, M.W.: 1995, 'Profiles of Turbulence in and above an Urban Street Canyon', Atmos. Environ.29, 1473–1486.

    Article  Google Scholar 

  • Roth M.: 2000, 'Review of Atmospheric Turbulence over Cities', Quart. J. Roy. Meteorol. Soc.126, 941–990.

    Article  Google Scholar 

  • Shafran, P. C., Seaman, N. L., and Gayno, G. A.: 2000, 'Evaluation of Numerical Predictions of Boundary Layer Structure during the Lake Michigan Ozone Study', J. Appl. Meteorol.39, 412–426.

    Article  Google Scholar 

  • Shaw, R. H. and Patton, E. G.: 2003, 'Canopy Element Influences on Resolved-and Subgrid-Scale Energy within a Large-Eddy Simulation', Agric. For. Meteorol.115, 5–17.

    Article  Google Scholar 

  • Shen, S. and Leclerc, M. Y.: 1997, 'Modelling the Turbulence Structure in the Canopy Layer', Agric. For. Meteorol.87, 3–25.

    Article  Google Scholar 

  • Taha, H.: 1999, 'Modifying a Mesoscale Model to Better Incorporate Urban Heat Storage: A Bulk Parameterization Approach', J. Appl. Meteorol.38, 466–473.

    Article  Google Scholar 

  • Therry, G. and Lacarrère, P.: 1983, 'Improving the Eddy Kinetic Energy Model for Planetary Boundary Layer Description', Boundary-Layer Meteorol.25, 63–88.

    Google Scholar 

  • Wilson, J. D., Finnigan, J. J., and Raupach, M. R.: 1998, 'A First-Order Closure for Distributed Plant-Canopy Flows, and its Application to Winds in a Canopy on a Ridge', Quart. J. Roy. Meteorol.Soc.124, 705–732.

    Article  Google Scholar 

  • Zeng, P. and Takahashi, H.: 2000, 'A First-Order Closure Model for theWind Flow within and above Vegetation Canopies', Agric. For. Meteorol.103, 301–313.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupont, S., Otte, T.L. & Ching, J.K.S. Simulation of Meteorological Fields Within and Above Urban and Rural Canopies with a Mesoscale Model. Boundary-Layer Meteorology 113, 111–158 (2004). https://doi.org/10.1023/B:BOUN.0000037327.19159.ac

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BOUN.0000037327.19159.ac

Navigation