Skip to main content
Log in

A Scale-Dependent Dynamic Model for Scalar Transport in Large-Eddy Simulations of the Atmospheric Boundary Layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

An important challenge in large-eddy simulationsof the atmospheric boundarylayer is the specification of the subgrid-scale(SGS) model coefficient(s)and, in particular, how to account for factorssuch as position in the flow,grid/filter scale and atmospheric stability.A dynamic SGS model (thatassumes scale invariance of the coefficients)is implemented in simulationsof a neutral boundary layer with a constantand uniform surface flux of apassive scalar. Results from our simulationsshow evidence that the lumpedcoefficient in the eddy-diffusion modelcomputed with the dynamic proceduredepends on scale. This scale dependence isstronger near the surface, and itis more important for the scalar than for thevelocity field (Smagorinskycoefficient) due to the stronger anisotropicbehaviour of scalars. Based onthese results, a new scale-dependent dynamicmodel is developed for theeddy-diffusion lumped coefficient. The newmodel, which is similar to theone proposed earlierfor the Smagorinsky coefficient,is fully dynamic, thus not requiring anyparameter specification or tuning.Simulations with the scale-dependent dynamicmodel yield the expected trendsof the coefficients as functions of positionand filter/grid scale.Furthermore, in the surface layer the newmodel gives improved predictionsof mean profiles and turbulence spectra ascompared with the traditionalscale-invariant dynamic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertson, J. D. and Parlange, M. B.: 1999, 'Natural Integration of Scalar Fluxes from Complex Terrain', Adv. Water Res. 23, 239–252.

    Google Scholar 

  • Andren, A., Brown, A. R., Graf, J., Mason, P. J., Moeng, C.-H., Nieuwstadt, F. T. M., and Schumann, U.: 1994, 'Large-Eddy Simulation of the Neutrally Stratified Boundary Layer: A Comparison of Four Computer Codes', Quart. J. Roy. Meteorol. Soc. 120, 1457–1484.

    Google Scholar 

  • Avissar, R. and Schmidt, T.: 1998, 'An Evaluation of the Scale at which Ground-Surface Heat Flux Patchiness Affects the Convective Boundary Layer Using Large-Eddy Simulations', J. Atmos. Sci. 55, 2666–2689.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, 'Flux-Profile Relationships in the Atmospheric Surface Layer', J. Atmos. Sci. 28, 181–158.

    Google Scholar 

  • Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A.: 1988, Spectral Methods in Fluid Dynamics (Springer Series on Computational Physics), Springer Verlag, 557 pp.

  • Canuto, V. M. and Cheng, Y.: 1997, 'Determination of the Smagorinsky-Lilly Constant CS', Phys. Fluids 9, 1368–1378.

    Google Scholar 

  • Deardorff, J. W.: 1971, 'On the Magnitude of the Subgrid-Scale Eddy Coefficient', J. Comp. Phys. 7, 120–133.

    Google Scholar 

  • Deardorff, J. W.: 1980, 'Stratocumulus-Capped Mixed Layers Derived from a Three-Dimensional Model', Boundary-Layer Meteorol. 18, 495–527.

    Google Scholar 

  • Germano, M., Piomelli, U., Moin, P., and Cabot, W. H.: 1991, 'A Dynamic Subgrid-Scale Eddy Viscosity Model', Phys. Fluids 3, 1760–1765.

    Google Scholar 

  • Ghosal, S., Lund, T., Moin, P., and Akselvoll, K.: 1995, 'A Dynamic Localization Model for Large-Eddy Simulation of Turbulent Flows', J. Fluid Mech. 286, 229–255.

    Google Scholar 

  • Hunt, J. C. R., Stretch, D. D., and Britter, R. E.: 1988, 'Length Scales in Stably Stratified Turbulent Flows and their Use in Turbulence Models', in J. S. Puttock (ed.), Stably Stratified Flows and Gas Dynamics, Clarendon Press, Oxford.

    Google Scholar 

  • Kang, H. S. and Meneveau, C.: 2001, 'Passive Scalar Anisotropy in a Heated Turbulent Wake: New Observations and Implications for LES', J. Fluid Mech. 442, 161–170.

    Google Scholar 

  • Kleissl, J., Meneveau, C., and Parlange, M. B.: 2003, 'On the Magnitude and Variability of Subgrid-Scale Eddy-Diffusion Coefficients in the Atmospheric Surface Layer', J. Atmos. Sci. 60, 2372–2388.

    Google Scholar 

  • Kolmogorov, A. N.: 1962, 'A Refinement of Previous Hypotheses Concerning the Local Structure of Turbulence in a Viscous Incompressible Fluid at High Reynolds Number', J. Fluid Mech. 13, 82–85.

    Google Scholar 

  • Kosovic, B.: 1997, 'Subgrid-Scale Modelling for the Large-Eddy Simulation of High-Reynolds-Number Boundary Layers', J. Fluid Mech. 336, 151–182.

    Google Scholar 

  • Lilly, D. K.: 1967, 'The Representation of Small-Scale Turbulence in Numerical Simulation Experiments', in Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, IBM form no. 320–1951, White Plains, New York, pp. 195–209.

    Google Scholar 

  • Lilly, D. K.: 1992, 'A Proposed Modification of the Germano Subgrid-Scale Closure Method', Phys. Fluids A 4, 633–635.

    Google Scholar 

  • Lin, C. L. and Glendening, J. W.: 2002, 'Large Eddy Simulation of an Inhomogeneous Atmospheric Boundary Layer under Neutral Conditions', J. Atmos. Sci. 59, 2479–2497.

    Google Scholar 

  • Marusic, I., Kunkel, G. J., and PortÉ-Agel, F.: 2001, 'Experimental Study of Wall Boundary Conditions for Large Eddy Simulation', J. Fluid Mech. 446, 309–320.

    Google Scholar 

  • Mason, P. J. and Derbyshire, S. H.: 1990, 'Large-Eddy Simulation of the Stably-Stratified Atmospheric Boundary Layer', Boundary-Layer Meteorol. 53, 117–162.

    Google Scholar 

  • Meneveau, C. and Katz, J.: 2000, 'Scale-Invariance and Turbulence Models for Large-Eddy Simulation', Annu. Rev. Fluid Mech. 32, 1–32.

    Google Scholar 

  • Meneveau, C. and Lund, T. S.: 1997, 'The Dynamic Smagorinsky Model and Scale-Dependent Coefficients in the Viscous Range of Turbulence', Phys. Fluids 9, 3932–3934.

    Google Scholar 

  • Meneveau, C., Lund, T. S., and Cabot, W.: 1996, 'A Lagrangian Dynamic Subgrid-Scale Model of Turbulence', J. Fluid Mech. 319, 353–385.

    Google Scholar 

  • Moeng, C.-H.: 1984, 'A Large-Eddy Simulation Model for the Study of Planetary Boundary-Layer Turbulence', J. Atmos. Sci. 46, 2311–2330.

    Google Scholar 

  • Moin, P., Squires, K. D., and Lee, S.: 1991, 'A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport', Phys. Fluids 3, 2746–2757.

    Google Scholar 

  • Nieuwstadt, F. T. M., Mason, P. J., Moeng, C.-H., and Schumann, U.: 1991, 'Large-Eddy Simulation of the Convective Boundary Layer: A Comparison of Four Computer Codes', Turbulent Shear Flows, 8, 343–367.

    Google Scholar 

  • Orszag, S. A. and Pao, Y.-H.: 1974, 'Numerical Computation of Turbulent Shear Flows', Adv. Geophys. 18A, 224–236.

    Google Scholar 

  • Piomelli, U.: 1999, 'Large-Eddy Simulation: Achievements and Challenges', Prog. Aerosp. Sci. 35, 335–362.

    Google Scholar 

  • Piomelli, U. and Balaras, E.: 2002, 'Wall-Layer Models for Large-Eddy Simulations', Annu. Rev. Fluid Mech. 34, 349–374.

    Google Scholar 

  • PortÉ-Agel, F., Meneveau, C., and Parlange, M. B.: 1998, 'Some Basic Properties of the Surrogate Subgrid-Scale Heat Flux in the Atmospheric Boundary Layer', Boundary-Layer Meteorol. 88, 425–444.

    Google Scholar 

  • PortÉ-Agel, F., Meneveau, C., and Parlange, M. B.: 2000, 'A Scale-Dependent Dynamic Model for Large-Eddy Simulation: Application to a Neutral Atmospheric Boundary Layer', J. Fluid Mech. 415, 261–284.

    Google Scholar 

  • PortÉ-Agel, F., Pahlow, M., Meneveau, C., and Parlange, M. B.: 2001, 'Atmospheric Stability Effect on Subgrid-Scale Physics for Large-Eddy Simulation', Adv. Water Res. 24, 1085–1102.

    Google Scholar 

  • Saddoughi, G. and Veeravalli, S. V.: 1994, 'Local Isotropy in Turbulent Boundary Layers at High Reynolds Number', J. Fluid Mech. 268, 333–372.

    Google Scholar 

  • Schmidt, H. and Schumann, U.: 1989, 'Coherent Structure of the Convective Boundary Layer Derived from Large-Eddy Simulations', J. Fluid Mech. 200, 511–562.

    Google Scholar 

  • Schumann, U.: 1975, 'Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli', J. Comp. Phys. 18, 376–404.

    Google Scholar 

  • Schumann, U.: 1991, 'Subgrid Length-scales for Large-eddy Simulation of Stratified Turbulence', Theor. Comp. Fluid Dyn. 2, 279–290.

    Google Scholar 

  • Shaw, R. H. and Schumann, U.: 1992, 'Large-Eddy Simulation of Turbulent Flow above and within a Forest', Boundary-Layer Meteorol. 61, 47–64.

    Google Scholar 

  • Sullivan, P. P., McWilliams, J. C., and Moeng, C.-H.: 1994, 'A Subgrid-Scale Model for Large-Eddy Simulation of Planetary Boundary-Layer Flows', Boundary-Layer Meteorol. 71, 247–276.

    Google Scholar 

  • Warhaft, Z.: 2000, 'Passive Scalars in Turbulent Flows', Annu. Rev. Fluid Mech. 32, 203–240.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porté-Agel, F. A Scale-Dependent Dynamic Model for Scalar Transport in Large-Eddy Simulations of the Atmospheric Boundary Layer. Boundary-Layer Meteorology 112, 81–105 (2004). https://doi.org/10.1023/B:BOUN.0000020353.03398.20

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BOUN.0000020353.03398.20

Navigation