Skip to main content
Log in

Rapid Biocompatible Micro Device Fabrication by Micro Electro-Discharge Machining

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Fabrication of a biocompatible micro device is predominantly done by silicon micromachining techniques. The litho-graphic and etching techniques require preparation and the use of masks which are time consuming and costly. Since bio research involves highly complex mechanisms, the modeling and simulation is difficult and experimental study is inevitable. To incorporate frequent design changes and to realize the hardware quickly, fabrication processes, complementary to the silicon micromachining techniques are required. In the present work the feasibility of using micro electro-discharge machining (EDM) for the fabrication of biocompatible microdevice has been studied. Micro channels with feature size as small as 25 μm are realized. The process is further improved by the introduction of ultrasonic vibration of the workpiece and the total time taken for the hardware realization is about 4 hours. The effects of ultrasonic vibration on the roughness of the spark eroded surface has been studied and reported. The potential of using micro EDM for making biocompatible devices for bio experiments is demonstrated and the surface finish achieved is well within the recommended R_z and R_a values of 3.4 and 0.4 μm respectively for biological studies like implant abutment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.F. Williams, The Williams Dictionary of Biomaterials (Liverpool University Press, Liverpool, UK, 1999), p. 40.

    Google Scholar 

  2. J. Braybrook, Biocompatibility: Assessment of Medical Devices and Materials (John Wiley & Sons, New York, 1997), p. 231.

    Google Scholar 

  3. I. Dion, C. Baquey, J.R. Monties, and P. Havlik, Biomaterials 14, 122-126 (1993).

    Google Scholar 

  4. E.A. Trillo, C. Ortiz, P. Dickerson, R. Villa, S.W. Stafford, and L.E. Murr, J. of Mat. Sci.: Mat. in Med. 12, 283-292 (2001).

    Google Scholar 

  5. W.H. Wollaston, Philosophical Transactions of the Royal Society of London 113, 17-22 (1823).

    Google Scholar 

  6. P.H. Morton, Philosophical Transactions of the Royal Society of London, Series A, Math. and Phys. Sci. 282, 401-411 (1976).

    Google Scholar 

  7. C.B. Johansson, J. Lausmaa, T. Rostlund, and P. Thomsen, J. of Mat. Sci.: Mat. in Med. 4, 132-141 (1993).

    Google Scholar 

  8. T.E. McGovern, J. Black, J.J. Jacobs, R.M. Graham, and M. LaBerge, J. of Biomed. Mat. Res. 32, 447-457 (1996).

    Google Scholar 

  9. R. Villa, C.R. Ortiz, E. Trillo, W.S. Stafford, and L.E. Murr, Scan. J. Scan. Microsc. 22, 103-104 (2000).

    Google Scholar 

  10. L.N. Lopez de Lacalle, J. Perez-Bilbatua, J.A. Sanchez, J.I. Llorente, A. Gutierrez, and J. Alboniga, Int. J. of Adv. Man. Tech. 16, 85-91 (2000).

    Google Scholar 

  11. G.B. Lee, S.H. Chen, G.R. Huang, W.C. Sung, and Y.H. Lin, Sensors and Actuators B 75, 142-148 (2001).

    Google Scholar 

  12. K.P. Rajurkar and Z.Y. Yu, Man. Engin. 125, 68-75 (2000).

    Google Scholar 

  13. M.C. Garcia-Alonso, L. Saldana, G. Valles, J.L. Gonzalez-Carrasco, J. Gonzalez-Cabrero, M.E. Martinez, E. Gil-Garay, and L. Munuera, Biomaterials 24, 19-26, 1(2003).

    Google Scholar 

  14. C. Gao and Z. Liu, J. of Mat. Pro. Tech. 139, 226-228 (2003).

    Google Scholar 

  15. Z. Wansheng, W. Zhenlong, D. Shichun, C. Guanxin, and W. Hongyu, J. of Mat. Proc. Tech. 120, 101-106 (2002).

    Google Scholar 

  16. M. Li, S. Yang, and Z. Wang, Chinese J. of Stomatology 36, 431-433 (2001).

    Google Scholar 

  17. D.D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y.F. Missirlis, Biomaterials 22, 1241-1251 (2001).

    Google Scholar 

  18. P. Linez-Bataillon, F. Monchau, M. Bigerelle, and H.F. Hildebrand, Biomol. Engin. 19, 133-141 (2002).

    Google Scholar 

  19. Z. Schwartz, C.H. Lohmann, A.K. Vocke, V.L. Sylvia, D.L. Cochran, D.D. Dean, and B.D. Boyan, J. of Bio. Mat. Res. 56, 417-426 (2001).

    Google Scholar 

  20. A.L. Rosa and M.M. Beloti, Brazilian Dental Journal 14, 16-21 (2003).

    Google Scholar 

  21. M. Fini, L. Savarino, N.N. Aldini, L. Martini, G. Giavaresi, G. Rizzi, D. Martini, A. Ruggeri, A. Giunti, and R. Giardino, Biomaterials 24, 3183-3192 (2003).

    Google Scholar 

  22. A.L. Rosa and M.M. Beloti, Oral Implants Research 14, 43-48 (2003).

    Google Scholar 

  23. C.J. Keller, G.B. Schneider, C.M. Stanford, and B. Kellogg, Implant Dentistry 12, 175-181 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Yeo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murali, M., Yeo, S.H. Rapid Biocompatible Micro Device Fabrication by Micro Electro-Discharge Machining. Biomedical Microdevices 6, 41–45 (2004). https://doi.org/10.1023/B:BMMD.0000013364.71148.51

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BMMD.0000013364.71148.51

Navigation