Skip to main content
Log in

H2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

H2 production by Petrotoga miotherma, Thermosipho africanus, Thermotoga elfii, Fervidobacterium pennavorans, and Thermotoga neapolitana was compared under microaerobic conditions. Contrary to these previously reported strains being strict anaerobes, all tested strains grew and produced H2 in the presence of micromolar levels of O2. T. neapolitana showed the highest H2 production under these conditions. Microscopic counting techniques were used to determine growth curves and doubling times, which were subsequently correlated with optical density measurements. The Biolog anaerobic microtiter plate system was used to analyze the carbon source utilization spectrum of T. neapolitana and to select non-metabolized or poorly metabolized carbohydrates as physiological buffers. Itaconic acid was successfully used as a buffer to overcome pH-induced limitations of cell growth and to facilitate enhanced production of CO-free H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams MW(1990) The metabolism of hydrogen by extremely thermophilic sulfur-dependent bacteria. FEMS Microbiol. Rev. 75: 219-238.

    Article  Google Scholar 

  • Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HSCoM)-dependent growth of Methanobacterium ruminatiumin a pressurized atmosphere. Appl. Environ. Micribiol. 32: 781-791.

    Google Scholar 

  • Baughn AD, Malamy MH (2004) The strict anaerobe Bacteroides fragilisgrows in and benefits from nanomolar concentrations of oxygen. Nature 427: 441-444.

    PubMed  Google Scholar 

  • Belkin S, Wirsen CO, Jannasch, HW (1986) A new sulfur-reducing, extremely thermophilic eubacterium from a submarine thermal vent. Appl. Environ. Microbiol. 51: 1180-1184.

    Google Scholar 

  • Childers SE, Vargas M, Noll, KM (1992) Improved methods for the cultivation of the extremely thermophilic bacterium Thermotoga neapolitana. Appl. Environ. Microbiol. 58: 3949-3953.

    Google Scholar 

  • Dobranik JK, Zak JC (1999) A microtiter plate procedure for evaluating fungal functional diversity. Mycologia 91: 756-765.

    Google Scholar 

  • Huber R, Langworthy TA, Konig H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritimasp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 ?C. Arch. Microbiol. 144: 324-333.

    Google Scholar 

  • Larminie J, Dicks A (2003) Fuel Cell Systems Explained.2nd edn., New York, NY: John Wiley & Sons.

    Google Scholar 

  • Mahajan D (2003) A method for low temperature catalytic production of hydrogen. U.S. Patent # 6,596,423.

  • Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbonsources utilisation profiles-a critique. FEMS Microbiol. Ecol. 42: 1-14.

    Article  Google Scholar 

  • Schroder C, Selig M, Schonheit P (1994) Glucose fermentation to acetate, CO2, and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway. Arch. Microbiol. 161: 460-470.

    Google Scholar 

  • Van Niel EWJ, Budde MAW, De Haas GG, Van der Wal FJ, Claassen PAM, Stams AJM (2002) Distinctive properties of high hydrogen producing extreme thermophiles,Caldicellulosiruptor saccharolyticusand Thermotoga elfii. Int. J. Hydrogen Energ. 27: 1391-1398.

    Google Scholar 

  • Van Ooteghem SA, Beer SK, Yue PC (2002) Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Appl. Biochem. Biotechnol. 98-100: 177-189.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Ooteghem, S.A., Jones, A., van der Lelie, D. et al. H2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions. Biotechnology Letters 26, 1223–1232 (2004). https://doi.org/10.1023/B:BILE.0000036602.75427.88

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BILE.0000036602.75427.88

Navigation