Skip to main content
Log in

Review Degradation of microbial polyesters

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(d-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegrada- bility of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including d-3-hydroxycarboxylic acids such as d-3-hydroxybutyric acid, by enzymatic degradation of PHB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic rule, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450-472.

    PubMed  Google Scholar 

  • Bachmann BM, Seebach D (1999) Investigation of the enzymatic cleavage of diastereomeric oligo(3-hydroxybutanoates) containing two to eight HB subunits. A model for the stereo-selectivity of PHB depolymerase from Alcaligenes faecalis. Macromolecules 32:1777-1784.

    Article  Google Scholar 

  • Calabia BP, Tokiwa Y (2004) Microbial degradation of poly(D-3-hydroxybutyrate) by a new thermophilic Streptomycesisolate. Biotechnol. Lett. 26: 15-19.

    Article  PubMed  Google Scholar 

  • Chiba T, Nakai T (1985) A synthetic approach to (+)-thienamycin from methyl (R)-(-)3-hydroxybutanoate. A new entry to (3R,4R)-3-[(R)-1-hydroxyethyl]-4-acetoxy-2-azetidinone. Chem. Lett.651-654.

  • Chowdhury AA (1963) Poly-β-hydroxybuttersaure abbauende Bakterien und exo-Enzyme. Arch. Mikrobiol.47: 167-200.

    PubMed  Google Scholar 

  • Doi Y (1990) Microbial Polyesters. New York: VCH.

    Google Scholar 

  • Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28: 4822-4828.

    Google Scholar 

  • Doi Y, Tamaki A, Kunioka M, Soga K (1988) Production of copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate by Alcaligenes eutrophusfrom butyric and pentanoic acid.Appl. Microbiol. Biotechnol. 28: 330-334.

    Article  Google Scholar 

  • Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1992) The mechanical properties of a thermoplastic elastomer produced by the bacterium Pseudomonas oleovorans. Rubber Chem. Technol. 65: 761-777.

    Google Scholar 

  • Holmes PA (1985) Applications of PHB-a microbially produced biodegradable thermoplastics. Phys. Technol. 16: 32-36.

    Article  Google Scholar 

  • Holmes PA (1988) Biologically produced PHA polymers and copolymers.In: Basset DC, ed. Developments in Crystalline Polymers, Vol. 2. London: Elsevier, pp 1-65.

    Google Scholar 

  • Jaeger KE, Ransac S, Dijkstra BW, Colson C, Heuvel Mvan, Misset O (1994) Bacterial lipases. FEMS Microbiol. Rev. 15: 29-63.

    PubMed  Google Scholar 

  • Jaeger KE, Steinbuchel A, Jendrossek D (1995) Substrate specificities of bacterial polyhydroxyalkanoate depolymerases and lipases: bacterial lipases hydrolyze poly(ω-hydroxyalkanoates). Appl. Environ. Microbiol. 61: 311-318.

    Google Scholar 

  • Jendrossek D (1998) Microbial degradation of polyesters: a review on extracellular poly-(hydroxyalkanoic acid) depolymerase. Polym. Degrad. Stab. 59: 317-325.

    Article  Google Scholar 

  • Jendrossek D (2001) Microbial degradation of polyesters. In: Scheper T, ed. Biopolyesters. Advances in Biochemical Engineering/ Biotechnology, Berlin, Heidelberg: Springer-Verlag, pp. 293-325.

    Google Scholar 

  • Jendrossek D, Knoke I, Habibian RB, Steinbuchel A, Schlegel HG (1993) Degradation of poly(3-hydroxybutyrate), PHB, by bacteria and purification of a novel PHB depolymerase from Comamonassp. J. Environ. Polym Degrad. 1: 53-63.

    Google Scholar 

  • Jendrossek D, Schirmer A, Schlegel HG (1996) Biodegradation of polyhydroxyalkanoic acids. Appl. Microbiol Biotechnol. 46: 451-463.

    PubMed  Google Scholar 

  • Kasuya K, Doi Y, Yao T (1994) Enzymatic degradation of poly[(R)-3-hydroxy-butyrate] by Comamonas testosteroneATSU of soil bacterium. Polym. Degrad. Stab. 45: 379-386.

    Article  Google Scholar 

  • Kobayashi T, Shiraki M, Abe T, Sugiyama A, Saito T (2003) Purification and properties of an intracellular 3-hydroxybutyrateoligomer hydrolase (PhaZ2) in Ralstonia eutrophaH16 and its identification as a novel intracellular poly(3-hydroxybutyrate) depolymerase. J. Bacteriol. 185: 3485-3490.

    PubMed  Google Scholar 

  • -caprolactone), poly(1,4-butylene adipate) and poly(vinyl acetate)}. Polym. Degrad. Stab. 35: 87-93.

    Article  Google Scholar 

  • -butanediol or from 3-hydroxybutyrate by Pseudomonassp. A33.}Appl. Microbiol. Biotechnol. 42: 901-909.

    Article  Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49: 1-14.

    Google Scholar 

  • Lee SY, Hong S, Lee S, Park S (2004) Fermentative production of chemicals that can be used for polymer synthesis. Macromol. Biosci. 4: 157-164.

    Article  PubMed  Google Scholar 

  • Lee SY, Lee Y, Wang F (1999) Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals.Biotechnol. Bioeng. 65: 363-368.

    Article  PubMed  Google Scholar 

  • Martin DP, Williams SF (2003) Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem. Eng. J. 16: 97-105.

    Article  Google Scholar 

  • Mergaert J, Webb A, Anderson C, Wouters A, Swings J (1993) Microbial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in soils. Appl. Environ. Microbiol. 59: 3233-3238.

    PubMed  Google Scholar 

  • Merrick JM, Doudoroff M (1964) Depolymerization of polyβ-hydroxybutyrate by an intracellular enzyme system. J. Bacteriol.88: 60-71.

    PubMed  Google Scholar 

  • Mukai K, Doi Y, Sema Y, Tomita K (1993) Substrate specificities in hydrolysis of polyhydroxyalkanoates by microbial esterases. Biotechnol. Lett. 15: 601-604.

    Google Scholar 

  • Mukai K, Yamada K, Doi Y (1994) Efficient hydrolysis of polyhydroxyalkanoates by Pseudomonas stutzeriYM1414 isolated from lake water. Polym. Degrad. Stab. 43: 319-327.

    Article  Google Scholar 

  • Nakayama K, Saito T, Fukui T, Shirakura Y, Tomita K (1985) Puri-fication and properties of extracellular poly(3-hydroxybutyrate) depolymerases from Pseudomonas lemoigne. Biochim. Biophys. Acta. 827: 63-72.

    PubMed  Google Scholar 

  • Nishida H, Tokiwa Y (1992) Effects of higher order structure of poly(3-hydroxybutyrate) on its biodegradation I. Effects of heat treatment on microbial degradation. J. Appl. Polym. Sci. 46: 1467-1476.

    Article  Google Scholar 

  • Distribution of poly(β-caprolactone) aerobic degrading microorganisms in different environments}. J. Environ. Polym. Degrad. 1: 227-233.

    Google Scholar 

  • Nishida H, Konno M, Ikeda A, Tokiwa Y (2000) Microbial degradation of poly(p-dioxanone) I. Isolation of degrading microorganisms and microbial decomposition in pure culture. Polym. Degrad. Stab. 68: 205-217.

    Article  Google Scholar 

  • Nishida H, Suzuki S, Tokiwa Y (1998) Distribution of poly(β-propiolactone) aerobic degrading microorganisms in different environments. J. Environ. Polym. Degrad. 6: 43-58.

    Google Scholar 

  • Noda I, Satkowski MM, Dowrey AE, Marcott C (2004) Polymer alloys of Nodax copolymers and poly(lactic acid). Macromol. Biosci. 4: 269-275.

    PubMed  Google Scholar 

  • Pranamuda H, Tokiwa Y, Tanaka H (1997) Polylactide degradation by an Amycolatopsissp. Appl. Environ. Microbiol. 63: 1637-1640.

    Google Scholar 

  • Saegusa H, Shiraki M, Kanai C, Saito T (2001) Cloning of an intracellular poly[D(-)-3-hydroxybutyrate] depolymerase gene from Ralstonia eutrophaH16 and characterization of the gene product. J. Bacteriol. 183: 94-100.

    PubMed  Google Scholar 

  • Sanchez JG, Tsuchii A, Tokiwa Y (2000) Degradation of polycaprolactone at 50 ?C by a thermotolerant Aspergillussp. Biotechnol. Lett. 22: 849-853.

    Article  Google Scholar 

  • Schober U, Thiel C, Jendrossek D (2000) Poly(3-hydroxyvalerate) depolymerase of Pseudomonas lemoigne. Appl. Environ. Microbiol. 66: 1385-1392.

    Article  PubMed  Google Scholar 

  • Shirakura Y, Fukui T, Saito T, Okamoto Y, Narikawa T, Koide K, Tomita K, Takemasa T, Masamune S (1986) Degradation of poly(3-hydroxybutyrate) by poly(3-hydroxybutyrate) depolymerase from Alcaligenes faecalisT1. Biochim. Biophys. Acta 880: 46-53.

    PubMed  Google Scholar 

  • Shirakura Y, Fukui T, Tanio T, Nakayama K, Matsuno R (1983) An extracellular D(-)-3-hydroxybutyrate oligomer hydrolase from Alcaligenes faecalis. Biochim. Biophys. Acta 748: 331-339.

    PubMed  Google Scholar 

  • Snell KD, Peoples OP (2001) Polyhydroxyalkanoate polymers and their production in transgenic plants. Metab. Eng. 4: 29-40.

    Article  Google Scholar 

  • Suyama T, Tokiwa Y, Quichanpagdee P, Kanagawa T, Kamagata Y (1998) Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl. Environ. Microbiol. 64: 5008-5011.

    PubMed  Google Scholar 

  • Swinkels JJM (1985) Composition and properties of commercial native starches. Starch 37: 1-5.

    Google Scholar 

  • Taguchi S, Nakamura H, Kichise T, TsugeT, Yamato I, Doi Y (2003) Production of polyhdroxyalkanoate (PHA) from renewable carbon sources in recombinant Ralstonia eutrophausing mutants of original PHA synthase. Biochem Eng J. 16: 107-113.

    Article  Google Scholar 

  • Takeda M, Koizumi J, Yabe K, Adachi K (1998) Thermostable poly(3-hydroxybutyrate) depolymerase of a thermophilic strain of Leptothrixsp. isolated from hot spring. J. Ferment. Bioeng. 85: 375-380.

    Article  Google Scholar 

  • Tanaka M, Saito T, Fukui T, Tomita K (1981) Purification and properties of D(-)-3-hydroxybutyrate-dimer hydrolase from Zoogloea ramigera1-16-M. Eur. J. Biochem. 118: 177-182.

    PubMed  Google Scholar 

  • Tanio T, Fukui T, Shirakura Y, Saito T, Tomita K, Kaiho T, Masamune S (1982) An extracellular poly(3-hydroxybutyrate) depolymerase from Alcaligenes faecalis. Eur. J. Biochem. 124: 71-77.

    PubMed  Google Scholar 

  • Tansengco ML, Tokiwa Y (1998a) Comparative population study on aliphatic polyesters-degrading microorganisms at 50 ?C. Chem. Lett.1043-1044.

  • Tansengco ML, Tokiwa Y (1998b) Thermophilic microbial degradation of polyethylene succinate. World J. Microbiol. Biotechnol. 14: 133-138.

    Article  Google Scholar 

  • Tokiwa Y, Jarerat A (2003) Microbial degradation of aliphatic polyesters. Macromol. Symp. 201: 283-289.

    Article  Google Scholar 

  • Tokiwa Y, Suzuki T (1977) Hydrolysis of polyesters by lipases. Nature 270: 76-78.

    PubMed  Google Scholar 

  • Tokiwa Y, Suzuki T (1978) Hydrolysis of polyesters by Rhizopus delemarlipase. Agric. Biol. Chem. 42: 1071-1072.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Tokiwa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokiwa, Y., Calabia, B.P. Review Degradation of microbial polyesters. Biotechnology Letters 26, 1181–1189 (2004). https://doi.org/10.1023/B:BILE.0000036599.15302.e5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BILE.0000036599.15302.e5

Navigation