Skip to main content
Log in

Dynamic analysis of apoptosis in primary cortical neurons by fixed- and real-time cytofluorometry

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

We describe here a cytofluorometric technology for the characterization of decision, execution, and degradation steps of neuronal apoptosis. Multiparametric flow cytometry was developped and combined to detailled fluorescence microscopy observations to establish the chronology and hierarchy of death-related events: neuron morphological changes, mitochondrial transmembrane potential (Δ Ψ m ) collapse, caspase-3 and -9 activation, phosphatidyl-serine exposure, nuclear dismantling and final plasma membrane permeabilization. Moreover, we developped a reliable real-time flow cytometric monitoring of Δ Ψ m and plasma membrane integrity in response to neurotoxic insults including MPTP treatment. Taking advantage of recently developped specific fluorescent probes and a third generation pan-caspase inhibitor, this integrated approach will be pertinent to study the cell biology of neuronal apoptosis and to characterize new neuro-toxic/protective molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Clarke P. Developmental cell death: Morphological diversity and multiple mechanisms. Anat Embryol (Berl) 1990; 180: 195-213.

    Google Scholar 

  2. Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999; 79: 1431-1568.

    Google Scholar 

  3. Mattson M. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 2000; 1: 120-129.

    Google Scholar 

  4. Yuan J, Yankner B. Apoptosis in the nervous system. Nature 2000; 407: 802-809.

    Google Scholar 

  5. Plesnila N, Zinkel S, Le D, et al. BID mediates neuronal cell death after oxygen/glucose deprivation and focal cerebral ischemia. Proc Natl Acad Sci USA 2001; 98: 15318-15323.

    Google Scholar 

  6. Troy C, Salvezen G. Caspases on the brain. J Neurosci Res 2002; 69: 145-150.

    Google Scholar 

  7. Thornberry N, Lazebnik Y. Caspases: Enemies within. Science 1998; 281: 1312-1316.

    Google Scholar 

  8. Metzstein M, Stanfield G, Horvitz H. Genetics of programmed cell death in C. elegans: Past, present and future. Trends Genet 1998; 14: 410-416.

    Google Scholar 

  9. Davies J. The Bcl-2 family of proteins, and the regulation of neuronal survival. Trends Neurosci 1995; 18: 355-358.

    Google Scholar 

  10. Reed J, Jurgensmeier J, Matsuyama S. Bcl-2 family proteins and mitochondria. Biochim Biophys Acta 1998; 1366: 127-137.

    Google Scholar 

  11. Sadoul R. Bcl-2 family members in the development and degenerative pathologies of the nervous system. Cell Death Differ 1998; 5: 805-815.

    Google Scholar 

  12. Matson M, Kroemer G. Mitochondria in cell death. Novel targets for neuroprotection and cardioprotection. Trends in Molecular Med 2003; 9: 196-205.

    Google Scholar 

  13. Chang L, Jonhson E. Cyclosporin A inhibits caspase-independent death of NGF-deprived sympathetic neurons: A potential role for mitochondrial permeability transition. J Cell Biol 2002; 157: 771-781.

    Google Scholar 

  14. Green D, Reed J. Mitochondria and apoptosis. Science 1998; 281: 1309-1312.

    Google Scholar 

  15. Wang X. The expanding role of mitochondria in apoptosis. Genes Dev 2001; 15: 2922-2933.

    Google Scholar 

  16. Gorman A, Ceccatelli S, Orrenius S. Role of mitochondria in neuronal apoptosis. Dev Neurosci 2000; 22: 348-358.

    Google Scholar 

  17. Cande C, Cecconi F, Dessen P, et al. Apoptosis-inducing factor (AIF): Key to the conserved caspase-independent pathways of cell death? J Cell Sci 2002; 115: 4727-4734.

    Google Scholar 

  18. Adams J, Cory S. Apoptosomes: Engines for caspase activation. Curr Opin Cell Biol 2002; 14: 715-720.

    Google Scholar 

  19. Shi Y. Mechanism of caspase activation and inhibition during apoptosis. Mol Cell 2002; 9: 459-470.

    Google Scholar 

  20. Kerr J, Wyllie A, Currie A. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239-257.

    Google Scholar 

  21. Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature Med 2000; 407: 784-788.

    Google Scholar 

  22. Maiese K, Vincent A. Membrane asymmetry and DNA degradation: Functionally distinct determinants of neuronal programmed cell death. J Neurosci Res 2000; 59: 568-580.

    Google Scholar 

  23. Nagata S. Apoptotic DNA fragmentation. Exp Cell Res 2000; 256: 12-18.

    Google Scholar 

  24. Johnson E. Methods for studying cell death and viability in primary neurons. Meth Cell Biol 1995; 46: 243-276.

    Google Scholar 

  25. Ethell D, Green D. Assessing Cytochrome-c release from mitochondria. In: Apoptosis Techniques and Protocols 2002: 21-34.

  26. Troy C. Diversity of caspase involment in neuronal cell death. In: In Advances in Cell Aging and Gerontology 2001: 67-92.

  27. Chang L, Putcha G, Deshmukh M, et al. Mitochondrial involvement in the point of no return in neuronal apoptosis. Biochimie 2002; 84: 223-231.

    Google Scholar 

  28. Darzynkiewicz Z, Bruno S, Del Bino G, et al. Features of apoptotic cells measured by flow cytometry. Cytometry 1992; 13: 795-808.

    Google Scholar 

  29. Lecoeur H, de Oliveira Pinto L, Gougeon M. Multiparametric flow cytometric analysis of biochemical and functional events associated with apoptosis and oncosis using the 7-aminoactinomycin D assay. J Immunol Methods 2002; 265.

  30. Herzenberg L, Parks D, Sahaf B, et al. The history and future of the fluorescence activated cell sorter and flow cytometry: A view from Stanford. Clin Chem 2002; 48: 1819-1827.

    Google Scholar 

  31. De Rosa S, Brenchle J, Roederer M. Beyond six colors; A new era in flow cytometry. Nature med 2003; 9: 112-117.

    Google Scholar 

  32. Yan X, Qiao J, Dou Y, et al. Beta-amyloid peptide fragment 31-35 induces apoptosis in cultured cortical neurons. Neuroscience 1999; 92: 177-184.

    Google Scholar 

  33. Fall C, Bennet J. Characterization and time course of MPP+-induced apoptosis in human SH-SY5Y neuroblastoma cells. J Neurosci Res 1999; 55: 620-628.

    Google Scholar 

  34. Schmid I, Krall W, Uittenbogaart C, et al. Dead cell discrimination with 7-amino-actinomycin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry 1992; 13: 204-208.

    Google Scholar 

  35. Kawamoto J, Barrett J. Cryopreservation of primary neurons for tissue culture. Brain Res 1986; 384: 84-93.

    Google Scholar 

  36. Knusel B, Michel P, Schwaber J, et al. Selective and nonselective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II. J Neurosci Res 1990; 10: 558-570.

    Google Scholar 

  37. Macleod M, Allsopp T, McLuckie J, et al. Serum withdrawal causes apoptosis in SHSY 5Y cells. Brain Res 2001; 889: 308-315.

    Google Scholar 

  38. Carpenter D, Stoner C Lawrence D. Flow cytometric measurements of neuronal death triggered by PCBs. Neurotoxicology 1997; 18: 507-513.

    Google Scholar 

  39. Lecoeur H, Ledru E, Prevost M, et al. Strategies for phenotyping apoptotic peripheral human lymphocytes comparing ISNT, annexin-V and 7-AAD cytofluorometric staining methods. J Immunol Methods 1997; 209: 111-123.

    Google Scholar 

  40. Smolewski P, Grabarek J, Halicka H, et al. Assay of caspase activation in situ combined with probing plasma membrane integrity to detect three distinct stages of apoptosis. J Immunol Methods 2002; 265: 111-121.

    Google Scholar 

  41. Lecoeur H, Fevrier M, Garcia S, et al. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods 2001; 253: 177-187.

    Google Scholar 

  42. Reers M, Smith T, Chen L. J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 1991; 30: 4480-4486.

    Google Scholar 

  43. Speciale S. MPTP: Insights into parkinsonian neurodegeneration. Neurotoxicol Teratol 2002; 24: 607-620.

    Google Scholar 

  44. Melnikov V, Faubel S, Siegmund B, et al. Neutrophil-independent mechanisms of caspase-1-and IL-18-mediated ischemic acute tubular necrosis in mice. J Clin Invest 2002; {</Type="Bold">Emphasis>pp110.

  45. Susin S, Lorenzo H, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature Med 1999; 397: 441-446.

    Google Scholar 

  46. Clarke P. Apoptosis versus necrosis. How valid a dichotomy for neurons. In: Cell Death and Diseases of the Nervous System 1999: 3-28.

  47. De Rosa S, Herzenberg L, Herzenberg L, et al. 11-color, 13-parameter flow cytometry; identification of human naive T cell phenotype, function, and T-cell receptor diversity. Nature Med 2001; 7: 245-248.

    Google Scholar 

  48. Castro-Obregon S, Del Rio G, Chen S, et al. A ligand-receptor pair that triggers a non-apoptotic form of programmed cell death. Cell Death Differ 2002; 9: 807-817.

    Google Scholar 

  49. Raffray M, Cohen G. Apoptosis and necrosis in toxicology: A continuum or distinct modes of cell death? Pharmacol Ther 1997; 3: 153-177.

    Google Scholar 

  50. Yue X, Mehmet H, Penrice J, et al. Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia-ischaemia. Neuropathol Appl Neurobiol 1997; 23: 16-25.

    Google Scholar 

  51. Nicotera P, Leist M, Manzo L. Neuronal cell death: A demise with different shapes. Trends Pharmacol Sci 1999; 20: 46-51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lecoeur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecoeur, H., Chauvier, D., Langonné, A. et al. Dynamic analysis of apoptosis in primary cortical neurons by fixed- and real-time cytofluorometry. Apoptosis 9, 157–169 (2004). https://doi.org/10.1023/B:APPT.0000018798.03705.69

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPT.0000018798.03705.69

Navigation