Skip to main content
Log in

Characterization of a new xylitol-producer Candida tropicalis strain

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A xylitol-producer yeast isolated from corn silage and designated as ASM III was selected based on its outstanding biotechnological potential. When cultivated in batch culture mode and keeping the dissolved oxygen at 40% saturation, xylitol production was as high as 130 g l–1 with a yield of 0.93 g xylitol g–1 xylose consumed. A preliminary identification of the yeast was performed according to conventional fermentation and assimilation physiological tests. These studies were complemented by using molecular approaches based on PCR amplification, restriction-fragment length polymorphism analysis and sequencing of the rDNA segments: intergenic transcribed spacer (ITS) 1- 5.8S rDNA – ITS 2, and D1/D2 domain of the 26S rRNA gene. Results from both the conventional protocols and the molecular characterization, and proper comparisons with the reference strains Candida tropicalis ATCC 20311 and NRRL Y-1367, led to the identification of the isolate as a new strain of C. tropicalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altamirano A., Vázquez F. and de Figueroa F.I.A. 2000. Isolation and identification of xylitol-producing yeasts from agricultural residues. Folia Microbiol. 45: 255–258.

    Google Scholar 

  • Belloch C., Barrio E., Garcia M.D. and Querol A. 1998. Phylogenetic reconstruction of the yeast genus Kluyveromyces: restriction map analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. System. Appl. Microbiol. 21: 266–273.

    Google Scholar 

  • Bignell G.R. and Evans I.H. 1990. Localization of glucoamylase genes of Saccharomyces cerevisiae by pulsed field gel electro-phoresis. Antonie van Leeuwenhoek 58: 49–55.

    Google Scholar 

  • Bruns T.D., White T.J. and Taylor J.W. 1991. Fungal molecular systematics. Ann. Rev. Ecol. Syst. 22: 525–564.

    Google Scholar 

  • Faria L.F., Gimenes M.A., Nobrega R. and Pereira N.J. 2002. In-fluence of oxygen availability on cell growth and xylitol produc-tion by Candida guilliermondii. Appl. Biochem. Biotechnol. 98: 449–458.

    Google Scholar 

  • Girio F.M., Pelica F. and Amaral-Collaço M.T. 1996. Characteriza-tion of xylitol dehydrogenase from Debaryomyces hansenii. Appl. Biochem. Biotechnol. 56: 79–87.

    Google Scholar 

  • Horitsu H., Yahashi Y., Takamizawa K., Kawai K., Suzuki T. and Watanabe N. 1992. Production of xylitol from d-xylose by Can-dida tropicalis: optimisation of production rate. Biotechnol. Bioeng. 40: 1085–1091.

    Google Scholar 

  • James S.A., Collins M.D. and Roberts I.N. 1996. Use of an rRNA internal transcribed spacer region to distinguish phylogenetically closely related species of the genera Zygosaccharomyces and Torulaspora. Int. J. Syst. Bacteriol. 46: 189–194.

    Google Scholar 

  • Kim S.Y., Kim J.H. and Oh D.K. 1997. Improvement of xylitol production by controlling oxygen supply in Candida parapsilosis. J. Ferment. Bioeng. 83: 267–270.

    Google Scholar 

  • Kurtzman C.P. 2001. Four new Candida species from geographi-cally diverse locations. Antonie van Leeuwenhoek 79: 353–361.

    Google Scholar 

  • Kurtzman C.P., Robnett C.J. and Yarrow D. 2001. Three new spe-cies of Candida from apple cider: C. anglica, C. cidri and C. pomicola. Antonie van Leeuwenhoek 80: 237–244.

    Google Scholar 

  • Lane D.J., Pace B., Olsen G.J., Sthal D.A., Sogin M.L. and Pace N.R. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc. Natl. Acad. Sci. USA 35: 23–27.

    Google Scholar 

  • Latif F. and Rajoka M.I. 2001. Production of ethanol and xylitol from corn cobs by yeasts. Bioresour. Technol. 77: 57–63.

    Google Scholar 

  • Lott T.J., Kuykendall R.J. and Reiss E. 1993. Nucleotide sequence analysis of the 5.8S rDNA and adjacent ITS2 region of Candida albicans and related species. Yeast 9: 1199–1206.

    Google Scholar 

  • McCarroll R., Olsen G.J., Stahl Y.D., Woese C.R. and Sogin M.L. 1983. Nucleotide sequence of the Dictyostelium discoideum small-subunit ribosomal ribonucleic acid infered from the gene sequence: evolutionary implications. Biochemistry 22: 5858–5868.

    Google Scholar 

  • Meyer S.A., Payne R.W. and Yarrow D. 1998. Candida Berkhout. In: Kurtzman C.P. and Fell J.W. (eds), The yeasts, A taxonomic study, 4th edn. Elsevier Science BV, Amsterdam, The Nether-lands, pp. 454–573.

    Google Scholar 

  • Oda Y., Yabuki M., Tonomura K. and Fukunaga M. 1999. Sequence analysis of 18S-28S rRNA spacer region from Saccharomyces kunashirensis, S. martiniae, S. rosinii, and S. transvaalensis. Curr. Microbiol. 38: 61–63.

    Google Scholar 

  • Parajó J.C., Dominguez H. and Dominguez J.M. 1997. Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolysates. Enz. Microb. Technol. 21: 18–24.

    Google Scholar 

  • Philippsen P., Stottz A. and Scherf C. 1991. DNA of Saccharomy-ces cerevisiae. In: Guthrie C. and Fink R.G. (eds), Guide to Yeast Genetics and Molecular Biology, Vol 194, Methods in Enzymology. Academic Press Inc., San Diego, New York, USA, pp. 169–182.

    Google Scholar 

  • Roseiro J.C., Peito M.A., Girio F.M. and Amaral-Collaço M.T. 1991. The effects of the oxygen transfer coefficient and substrate concentration on the xylose fermentation by Debaryomyces hansenii. Arch. Microbiol. 156: 484–490.

    Google Scholar 

  • Saha B.C. and Bothast R.J. 1999. Production of xylitol by Candida pelata. J. Ind. Microbiol. Biotechnol. 22: 633–636.

    Google Scholar 

  • Sambrook J., Fritsch E.F. and Maniatis T. 1989. Gel electrophore-sis of DNA. In: Ford N., Nolan C. and Ferguson M. (eds), Molecular Cloning. A laboratory Manual 2nd edn. (Book 1, Chapter 6). Cold Spring Harbor Laboratory Press, New York, USA.

    Google Scholar 

  • Silva C.J.S.M. and Roberto I.C. 2001. Improvement of xylitol production by Candida guilliermondii FTI20037 previously adapted to rice straw hemicellulosic hydrolysates. Lett. Appl. Microbiol. 32: 248–252.

    Google Scholar 

  • Turenne C.Y., Sanche S.E., Hoban D.J., Karlowky J.A. and Kabani J.A. 1999. Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system. J. Clin. Microbiol. 37: 1846–1851.

    Google Scholar 

  • Vandeska E., Amartey S., Kuzmanova S. and Jeffries T. 1995. Effects of environmental conditions on production of xylitol by Candida boidinii. World J. Microbiol. Biotechnol. 11: 213–218.

    Google Scholar 

  • Walther T., Hensirisak P. and Agblevor F.A. 2001. The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Bioresour. Technol. 76: 213–220.

    Google Scholar 

  • Yarrow D. 1998. Methods for the isolation, maintenance and iden-tification of yeasts. In: Kurtzman C.P. and Fell J.W. (eds), The yeasts, A taxonomic study, 4th edn. Elsevier Science BV, Amsterdam, The Netherlands, pp. 77–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, F., Delgado, O.D., Martínez, M.A. et al. Characterization of a new xylitol-producer Candida tropicalis strain. Antonie Van Leeuwenhoek 85, 281–286 (2004). https://doi.org/10.1023/B:ANTO.0000020368.37876.1c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ANTO.0000020368.37876.1c

Navigation