Skip to main content
Log in

Lysine Dendrimers and Their Starburst Polymer Derivatives: Possible Application for DNA Compaction and in vitro Delivery of Genetic Constructs

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

We attempted to find some compounds for the effective delivery of gene constructs into cells and obtained two trispherical dendrimers on the basis of lysine, (Lys)8-(α,ε-Lys)4-(α,ε-Lys)2-(α,ε-Lys)-Ala-NH2 (D1) and ((Lys)8-(α,ε-Lys)4-(α,ε-Lys)2-α,ε-Lys)-Ala-[Lys(Plm)]2-Ala-NH2 (D2), as well as the starburst polymeric derivatives of D1, (pVIm) 8 -D1 and (pLys) n -D1, containing poly(N-vinylimidazole) and polylysine chains single-point bound to the dendrimer amino groups. The conditions of dendrimer–plasmid DNA complex formation were studied. The intracellular localization of these complexes and the expression of gene constructs delivered with their help were analyzed in transfection experiments on the HeLa cell cultures of human epithelial carcinoma and on mouse C2C12 myoblasts. It was found that the chemical structure of dendrimer D1 and its derivatives significantly affected the structure and properties of complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Kay, M., Liu, D., and Hoogerbrugge, P.M., Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 12 744-12 746.

    Google Scholar 

  2. Wilson, J.M., N. Engl. J. Med., 1995, vol. 334, pp. 1185-1187.

    Google Scholar 

  3. Li, S. and Huang, L., Gene, Ther., 2000, vol. 7, pp. 31-34.

    Google Scholar 

  4. Smaglik, P., The Scientist, 1999, vol. 12, pp. 1-3.

    Google Scholar 

  5. Smaglik, P., The Scientist, 1999, vol. 13, pp. 9-11.

    Google Scholar 

  6. Morris, M.C., Chaloin, L., Heitz, F., and Davita, G., Curr. Opin. Biothechnol., 2000, vol. 11, pp. 461-468.

    Google Scholar 

  7. Newkome, G.R., Moorefield, C.N., and Vogtle, F., Dendritic Molecules (Concepts, Synthesis, Perspectives), Wienheim: VCH, 1996.

    Google Scholar 

  8. Kukowska-Latallo, J.F., Bielinska, A.U., Johnson, J., Spindler, R., Tomalia, D.A., and Baker, J.R., Jr., Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 4897-4902.

    Google Scholar 

  9. Boletta, A., Benigni, A., Lutz, J., Remuzzi, G., Soria, M.R., and Monaco, L., Hum. Gene Ther., 1997, vol. 8, pp. 1243-1251.

    Google Scholar 

  10. Malik, N., Wiwattanapatapee, R., Klopsch, R., Lorenz, K., Frey, H., Weener, J.W., Meijer, E.W., Paulus, W., and Duncan, R., J. Contr. Rel., 2000, vol. 65, pp. 133-148.

    Google Scholar 

  11. Ohsaki, M., Okuda, T., Wada, A., Hirayama, T., Niidome, T., and Aoyagi, H., Bioconjug. Chem., 2002, vol. 13, pp. 510-517.

    Google Scholar 

  12. Tam, J.P., Proc. Natl. Acad. Sci. USA, 1988, vol. 85, p. 5409.

    Google Scholar 

  13. Vlasov, G.P., Illarionova, N.G., Izvarina, N.L., and Denisov, I.G., Macromol. Chem. Suppl., 1985, vol. 9, pp. 239-249.

    Google Scholar 

  14. Vlasov, G.P., Nikonova, I.N., and Illarionova, N.G., Prikl. Biokhim. Mikrobiol., 1981, vol. 17, pp. 494-499.

    Google Scholar 

  15. Vlasov, G.P., Izvarina, N.L., and Illarionova, N.G., Biokhimiya (Moscow), 1981, vol. 46, pp. 942-950.

    Google Scholar 

  16. Vlasov, G.P., Nikonova, I.N., Illarionova, N.G., and Denisov, I.G., Prikl. Biokhim. Mikrobiol., 1987, vol. 23, pp. 600-606.

    Google Scholar 

  17. Vlasov, G.P., Izvarina, N.L., Illarionova, N.G., Denisov, I.G., and Malyshev, D.A., Prikl. Biokhim. Mikrobiol, 1988, vol. 24, pp. 56-61.

    Google Scholar 

  18. Vlasov, G.P., Pankova, G.A., Nikonova, I.N., and Antonov, N.G., Bioorg. Khim., 2003, vol. 29, pp. 38-48.

    Google Scholar 

  19. Nureddin, A. and Inagami, T., Biochem. J., 1975, vol. 147, pp. 71-78.

    Google Scholar 

  20. Glaser, A.N., Bar-Eli, A., and Katchalski, E., J. Biol. Chem., 1962, vol. 237, pp. 1832-1838.

    Google Scholar 

  21. Niidome, T., Takai, K., Urakawa, M., Ohmori, N., Wada, A., Hyrayama, T., and Aoyagi, H., Bioconjug. Chem., 1999, vol. 10, pp. 773-780.

    Google Scholar 

  22. Niidome, T., Urakava, M., Takai, K., Matsuo, Y., Ohmori, N., Wada, A., Hirayama, T., and Aoyagi, H., J. Peptide Res., 1999, vol. 54, pp. 361-367.

    Google Scholar 

  23. Gottshalk, S., Sparrow, J.T., Hauer, J., Mims, M.P., Leland, RE., Woo, S.L.C., and Smith, L.C., Gene Therapy, 1996, vol. 3, pp. 448-457.

    Google Scholar 

  24. Satake, K., Okuyama, T., Ohashi, M., and Shimoda, T., J. Biochem. (Japan), 1960, vol. 47, pp. 654-660.

    Google Scholar 

  25. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning, Cold Spring Harbor, NY: Cold Spring Harbor Lab., 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlasov, G.P., Korol'kov, V.I., Pankova, G.A. et al. Lysine Dendrimers and Their Starburst Polymer Derivatives: Possible Application for DNA Compaction and in vitro Delivery of Genetic Constructs. Russian Journal of Bioorganic Chemistry 30, 12–20 (2004). https://doi.org/10.1023/B:RUBI.0000015768.32255.1a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUBI.0000015768.32255.1a

Navigation