Skip to main content
Log in

Hepatic Regulation of Apolipoprotein B

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Fisher EA, Ginsberg HN. Complexity in the secretory pathway: The assembly and secretion of apolipoprotein B-containing lipoproteins. J Biol Chem2002; 277: 17377–17380.

    Google Scholar 

  2. Yao Z, McLeod RS. Synthesis and secretion of hepatic apolipoprotein B-containing lipoproteins. Biochim Biophys Acta1994; 1212: 152–166.

    Google Scholar 

  3. Sparks JD, Sparks CE, Insulin modulation of hepatic synthesis and secretion of apolipoprotein B by rat hepatocytes. J Biol Chem1990; 265: 8854–8862.

    Google Scholar 

  4. Sparks JD, Zolfaghari R, Sparks CE, Smith HC, Fisher EA. Impaired hepatic apolipoprotein B and E translation in streptozotocin diabetic rats. J Clin Invest1992; 89: 1418–1430.

    Google Scholar 

  5. Theriault A, Ogbonna G, Adeli K. Thyroid hormone modulates apolipoprotein B gene expression in HepG2 cells. Biochem Biophys Res Commun 1992; 186: 617–623.

    Google Scholar 

  6. Pan M, Liang J, Fisher EA, Ginsberg HN. Inhibition of translocation of nascent apolipoprotein B across the endoplasmic reticulum membrane is associated with selective inhibition of the synthesis of apolipoprotein B. J Biol Chem2000; 275: 27399–27405.

    Google Scholar 

  7. Sparks JD, Sparks CE. Apolipoprotein B and lipoprotein metabolism. Adv Lipid Res1985; 21: 1–46.

    Google Scholar 

  8. Adeli K, Taghibiglou C, Van Iderstine SC, Lewis GF. Mechanisms of hepatic very low-density lipoprotein overproduction in insulin resistance. Trends Cardiovasc Med 2001; 11: 170–176.

    Google Scholar 

  9. Knott TJ, Wallis SC, Powell LM, Pease RJ, Lusis AJ, Blackhart B, McCarthy BJ, Mahley RW, Levy-Wilson B, Scott J. Complete cDNA and derived protein sequence of human apolipoprotein B-100. Nucleic Acids Res 1986; 14: 7501–7503.

    Google Scholar 

  10. Kozak M. Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol Cell Biol 1989; 9: 5134–5142.

    Google Scholar 

  11. Day DA, Tuite MF. Post-transcriptional gene regulatory mechanisms in eukaryotes: An overview. J Endocrinol 1998; 157: 361–371.

    Google Scholar 

  12. Pontrelli L, Sidiropoulos KG, Adeli K. Translational Control of Apolipoprotein B mRNA: Regulation via Cis Elements in the 5and 3Untranslated Regions. Biochemistry2004; 43: 6734–6744.

    Google Scholar 

  13. Sniderman AD, Cianflone K. Substrate delivery as a determinant of hepatic apoB secretion. Arterioscler Thromb 1993; 13: 629–636.

    Google Scholar 

  14. Yao Z, Tran K, McLeod RS. Intracellular degradation of newly synthesized apolipoprotein B. J Lipid Res1997; 38: 1937–1953.

    Google Scholar 

  15. Yao ZM, Blackhart BD, Linton MF, Taylor SM, Young SG, McCarthy BJ. Expression of carboxyl-terminally truncated forms of human apolipoprotein B in rat hepatoma cells. Evidence that the length of apolipoprotein B has a major effect on the buoyant density of the secreted lipoproteins. J Biol Chem1991; 266: 3300–3308.

    Google Scholar 

  16. Lapierre LR, Currie DL, Yao Z, Wang J, McLeod RS. Amino acid sequences within the beta1 domain of human apolipoprotein B can mediate rapid intracellular degradation. J Lipid Res2004; 45: 366–377.

    Google Scholar 

  17. Pease RJ, Harrison GB, Scott J. Cotranslocational insertion of apolipoprotein B into the inner leaflet of the endoplasmic reticulum. Nature 1991; 353: 448–450.

    Google Scholar 

  18. Hebbachi AM, Gibbons GF. Microsomal membrane-associated apoB is the direct precursor of secreted VLDL in primary cultures of rat hepatocytes. J Lipid Res2001; 42: 1609–1617.

    Google Scholar 

  19. Higashi Y, Itabe H, Fukase H, Mori M, Fujimoto Y, Takano T. Transmembrane lipid transfer is crucial for providing neutral lipids during very low density lipoprotein assembly in endoplasmic reticulum. J Biol Chem2003; 278: 21450–21458.

    Google Scholar 

  20. Pariyarath R, Wang H, Aitchison JD, Ginsberg HN, Welch WJ, Johnson AE, Fisher EA. Co-translational interactions of apoprotein B with the ribosome and translocon during lipoprotein assembly or targeting to the proteasome. J Biol Chem2001; 276: 541–550.

    Google Scholar 

  21. Huang XF, Shelness GS. Efficient glycosylation site utilization by intracellular apolipoprotein B. Implications for proteasomal degradation. J Lipid Res1999; 40: 2212–2222.

    Google Scholar 

  22. Chen Y, Le Caherec F, Chuck SL. Calnexin and other factors that alter translocation affect the rapid binding of ubiquitin to apoB in the Sec61 complex. J Biol Chem1998; 273: 11887–11894.

    Google Scholar 

  23. Zhou M, Wu X, Huang LS, Ginsberg HN. Apoprotein B100, an inefficiently translocated secretory protein, is bound to the cytosolic chaperone, heat shock protein 70. J Biol Chem1995; 270: 25220–25224.

    Google Scholar 

  24. Gusarova V, Caplan AJ, Brodsky JL, Fisher EA. A poprotein B degradation is promoted by the molecular chaperones hsp90 and hsp70. J Biol Chem2001; 276: 24891–24900.

    Google Scholar 

  25. Liang JS, Kim T, Fang S, Yamaguchi J, Weissman AM, Fisher EA, Ginsberg HN. Overexpression of the tumor autocrine motility factor receptor Gp78, a ubiquitin protein ligase, results in increased ubiquitinylation and decreased secretion of apolipoprotein B100 in HepG2 cells. J Biol Chem2003; 278: 23984–23988.

    Google Scholar 

  26. Zhang J, Herscovitz H. Nascent lipidated apolipoprotein B is transported to the Golgi as an incompletely folded intermediate as probed by its association with network of endoplasmic reticulum molecular chaperones, GRP94, ERp72, BiP, calreticulin, and cyclophilin B. J Biol Chem2003; 278: 7459–7468.

    Google Scholar 

  27. Tatu U, Helenius A. Interaction of newly synthesized apolipoprotein B with calnexin and celreticulin requires glucose trimming in the endoplasmic reticulum. Biosci Rep 1999; 19: 189–196.

    Google Scholar 

  28. Liao W, Chan L. Tunicamycin induces ubiquitination and degradation of apolipoprotein B in HepG2 cells. Biochem J2001; 353: 493–501.

    Google Scholar 

  29. Vukmirica J, Nishimaki-Mogami T, Tran K, Shan J, McLeod RS, Yuan J, Yao Z. The N-linked oligosaccharides at the amino terminus of human apoB are important for the assembly and secretion of VLDL. J Lipid Res2002; 43: 1496–1507.

    Google Scholar 

  30. Hevi S, Chuck SL. Ferritins can regulate the secretion of apolipoprotein B. J Biol Chem2003; 278: 31924–31929.

    Google Scholar 

  31. Rashid KA, Hevi S, Chen Y, Le Caherec F, Chuck SL. A proteomic approach identifies proteins in hepatocytes that bind nascent apolipoprotein B. J Biol Chem2002; 277: 22010–22017.

    Google Scholar 

  32. Fisher EA, Pan M, Chen X, Wu X, Wang H, Jamil H, Sparks JD, Williams KJ. The triple threat to nascent apolipoprotein B. Evidence for multiple, distinct degradative pathways. J Biol Chem2001; 276: 27855–27863.

    Google Scholar 

  33. Pan M, Cederbaum AI, Zhang YL, Ginsberg HN, Williams KJ, Fisher EA. Lipid peroxidation and oxidant stress regulate hepatic apolipoprotein B degradation and VLDL production. J Clin Invest2004; 113: 1277–1287.

    Google Scholar 

  34. Qiu W, Kohen-Avramoglu R, Mhapsekar S, Tsai J, Austin RC, Adeli K. Glucosamine-induced ER Stress Selectively Promotes ApoB Degradation in HepG2 Cells Leading to Profound Inhibition of ApoB Secretion: Evidence for Grp78-Mediated Retention and Targeting of Newly-Synthesized ApoB100 to Proteasomal Degradation. Arterioscler Thromb Vas Biol 2004; 24(5): e51–P475 (Abstr.)

    Google Scholar 

  35. Adeli K, Macri J, Mohammadi A, Kito M, Urade R, Cavallo D. Apolipoprotein B is intracellularly associated with an ER-60 pro-tease homologue in HepG2 cells. J Biol Chem1997; 272: 22489–22494.

    Google Scholar 

  36. Qiu W, Kohen-Avramoglu R, Rashid-Kolvear F, Au CS, Chong TM, Lewis GF, Trinh DK, Austin RC, Urade R, Adeli K. Overexpres-sion of the endoplasmic reticulum 60 protein ER-60 downregu-lates ApoB100 secretion by inducing its intracellular degradation via a nonproteasomal pathway: Evidence for an ER-60-mediated and pCMB-sensitive intracellular degradative pathway. Biochemistry2004; 43: 4819–4831.

    Google Scholar 

  37. Taghibiglou C, Rashid-Kolvear F, Van Iderstine SC, Le Tien H, Fantus IG, Lewis GF, and Adeli K. Hepatic very low density.300 Avramoglu and Adelilipoprotein-ApoB overproduction is associated with attenuated hep-atic insulin signaling and overexpression of protein-tyrosine phos-phatase 1B in a fructose-fed hamster model of insulin resistance. J Biol Chem2002; 277: 793–803.

    Google Scholar 

  38. Twisk J, Gillian-Daniel DL, Tebon A, Wang L, Barrett PH, Attie AD. The role of the LDL receptor in apolipoprotein B secretion. J Clin Invest2000; 105: 521–532.

    Google Scholar 

  39. Gillian-Daniel DL, Bates PW, Tebon A, Attie AD. Endoplasmic reticulum localization of the low density lipoprotein receptor medi-ates presecretory degradation of apolipoprotein B. Proc Natl Acad Sci USA2002; 99: 4337–4342.

    Google Scholar 

  40. Larsson SL, Skogsberg J, Bjokegren J. The low density lipoprotein receptor prevents secretion of dense apoB100-containing lipoproteins from the liver. J Biol Chem2004; 279: 831–836.

    Google Scholar 

  41. Liao W, Hui TY, Young SG, Davis RA. Blocking microsomal triglyc-eride transfer protein interferes with apo B secretion without causing retention or stress in the ER. J Lipid Res2003; 44: 978–985.

    Google Scholar 

  42. Mitchell DM, Zhou M, Pariyarath R, Wang H, Aitchison JD, Ginsberg HN, Fisher EA. Apoprotein B100 has a prolonged interaction with the translocon during which its lipidation and translocation change from dependence on the microsomal triglyceride transfer protein to independence. Proc Natl Acad Sci USA1998; 95: 14733–14738.

    Google Scholar 

  43. Olofsson SO, Asp L, Boren J. The assembly and secretion of apolipoprotein B-containing lipoproteins. Curr Opin Lipidol 1999; 10: 341–346.

    Google Scholar 

  44. Gordon DA, Jamil H, Sharp D, Mullaney D, Yao Z, Gregg RE, Wetterau J. Secretion of apolipoprotein B-containing lipoproteins from HeLa cells is dependent on expression of the microsomal triglyceride transfer protein and is regulated by lipid availability. Proc Natl Acad Sci USA1994; 91: 7628–7632.

    Google Scholar 

  45. Gordon DA, Jamil H, Gregg RE, Olofsson SO, Boren J. Inhibition of the microsomal triglyceride transfer protein blocks the first step of apolipoprotein B lipoprotein assembly but not the addition of bulk core lipids in the second step. J Biol Chem1996; 271: 33047–33053.

    Google Scholar 

  46. Gordon DA, Jamil H. Progress towards understanding the role of microsomal triglyceride transfer protein in apolipoprotein-B lipoprotein assembly. Biochim Biophys Acta2000; 1486: 72–83.

    Google Scholar 

  47. Rustaeus S, Stillemark P, Lindberg K, Gordon D, Olofsson SO. The microsomal triglyceride transfer protein catalyzes the post-translational assembly of apolipoprotein B-100 very low density lipoprotein in McA-RH7777 cells. J Biol Chem1998; 273: 5196–5203.

    Google Scholar 

  48. Wang Y, McLeod RS, Yao Z. Normal activity of microsomal triglyceride transfer protein is required for the oleate-induced secretion of very low density lipoproteins containing apolipoprotein B from McA-RH7777 cells. J Biol Chem1997; 272: 12272–12278.

    Google Scholar 

  49. Yamaguchi J, Gamble MV, Conlon D, Liang JS, Ginsberg HN. The conversion of apoB100 low density lipoprotein/high density lipoprotein particles to apoB100 very low density lipoproteins in response to oleic acid occurs in the endoplasmic reticulum and not in the Golgi in McA RH7777 cells. J Biol Chem2003; 278: 42643–42651.

    Google Scholar 

  50. Pan M, Liang JS, Fisher EA, Ginsberg HN. The late addition of core lipids to nascent apolipoprotein B100, resulting in the assembly and secretion of triglyceride-rich lipoproteins, is independent of both microsomal triglyceride transfer protein activity and new triglyceride synthesis. J Biol Chem2002; 277: 4413–4421.

    Google Scholar 

  51. Tran K, Thorne-Tjomsland G, DeLong CJ, Cui Z, Shan J, Burton L, Jamieson JC, Yao Z. Intracellular assembly of very low density lipoproteins containing apolipoprotein B100 in rat hepatoma McARH7777 cells. J Biol Chem2002; 277: 31187–31200.

    Google Scholar 

  52. Gusarova V, Brodsky JL, Fisher EA. Apolipoprotein B100 exit from the endoplasmic reticulum (ER) is COPII-dependent, and its lipidation to very low density lipoprotein occurs post-ER. J Biol Chem2003; 278: 48051–48058.

    Google Scholar 

  53. Asp L, Claesson C, Boren J, Olofsson SO. ADP-ribosylation factor 1 and its activation of phospholipase D are important for the assembly of very low density lipoproteins. J Biol Chem2000; 275: 26285–26292.

    Google Scholar 

  54. Vilas GL, Berthiaume LG. A role for palmitoylation in the quality control, assembly and secretion of apolipoprotein B. Biochem J2004; 377: 121–130.

    Google Scholar 

  55. Vukmirica J, Tran K, Liang X, Shan J, Yuan J, Miskie BA, Hegele RA, Resh MD, Yao Z. Assembly and secretion of very low density lipoproteins containing apolipoprotein B48 in transfected McA-RH7777 cells. Lack of evidence that palmitoylation of apolipoprotein B48 is required for lipoprotein secretion. J Biol Chem2003; 278: 14153–14161.

    Google Scholar 

  56. Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 2002; 288: 2709–2716.

    Google Scholar 

  57. Reaven GM. The role of insulin resistance and hyperinsulinemia in coronary heart disease. Metabolism 1992; 41: 16–19.

    Google Scholar 

  58. Lewis GF, Steiner G. Acute effects of insulin in the control of VLDL production in humans. Implications for the insulin-resistant state. Diabetes Care1996,19: 390–393.

    Google Scholar 

  59. Kissebah AH. Insulin resistance in visceral obesity. Int J Obes 1991; 15 (Suppl 2): 109–115.

    Google Scholar 

  60. Grundy SM, Mok HY, Zech L, Steinberg D, Berman M. Transport of very low density lipoprotein triglycerides in varying degrees of obesity and hypertriglyceridemia. J Clin Invest1979; 63: 1274–1283.

    Google Scholar 

  61. Taskinen MR. Insulin resistance and lipoprotein metabolism. Curr Opin Lipidol 1995; 6: 153–160.

    Google Scholar 

  62. Reaven GM, Chen YD, Jeppesen J, Maheux P, Krauss RM. Insulin resistance and hyperinsulinemia in individuals with small, dense low density lipoprotein particles. J Clin Invest1993; 92: 141–146.

    Google Scholar 

  63. Hauner H. The impact of pharmacotherapy on weight management in type 2 diabetes. Int J Obes Relat Metab Disord 1999; 23(Suppl 7): S12–S17.

    Google Scholar 

  64. Shafrir E. Animal models of non-insulin-dependent diabetes. Diabetes Metab Rev1992; 8: 179–208.

    Google Scholar 

  65. Shafrir E, Ziv E, Mosthaf L. Nutritionally induced insulin resistance and receptor defect leading to beta-cell failure in animal models. Ann NY Acad Sci 1999; 892: 223–246.

    Google Scholar 

  66. Dolphin PJ, Stewart B, Amy RM, Russell JC. Serum lipids and lipoproteins in the atherosclerosis prone LA/N corpulent rat. Biochim Biophys Acta1987; 919: 140–148.

    Google Scholar 

  67. Vance JE, Russell JC. Hypersecretion of VLDL, but not HDL, by hepatocytes from the JCR: LA-corpulent rat. J Lipid Res1990; 31: 1491–1501.

    Google Scholar 

  68. Siri P, Candela N, Zhang YL, Ko C, Eusufzai S, Ginsberg HN, Huang LS. Post-transcriptional stimulation of the assembly and secretion of triglyceride-rich apolipoprotein B lipoproteins in a mouse with selective deficiency of brown adipose tissue, obesity, and insulin resistance. J Biol Chem2001; 276: 46064–46072.

    Google Scholar 

  69. Zoltowska M, Ziv E, Delvin E, Lambert M, Seidman E, Levy E. Both insulin resistance and diabetes in Psammomys obesus upregulate the hepatic machinery involved in intracellular VLDL assembly. Arterioscler Thromb Vasc Biol 2004; 24: 118–123.

    Google Scholar 

  70. Zoltowska M, Ziv E, Delvin E, Stan S, Bar-On H, Kalman R, Levy E. Circulating lipoproteins and hepatic sterol metabolism in Psammomys obesus prone to obesity, hyperglycemia and hyperinsulinemia. Atherosclerosis 2001; 157: 85–96.

    Google Scholar 

  71. Avramoglu RK, Qiu W, Adeli K. Mechanisms of metabolic dyslipidemia in insulin resistant states: Deregulation of hepatic and intestinal lipoprotein secretion. Front Biosci 2003; 8: d464–d476.

    Google Scholar 

  72. Carpentier A, Taghibiglou C, Leung N, Szeto L, Van Iderstine SC, Uffelman KD, Buckingham R, Adeli K, Lewis GF. Ameliorated hepatic insulin resistance is associated with normalization of microsomal triglyceride transfer protein expression and reduction in very low density lipoprotein assembly and secretion in the fructosefed hamster. J Biol Chem2002; 277: 28795–28802.

    Google Scholar 

  73. Taghibiglou C, Carpentier A, Van Iderstine SC, Chen B, Rudy D, Aiton A, Lewis GF, Adeli K. Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance. Evidence for enhanced lipoprotein assembly, reduced intracellular ApoB degradation, and increased microsomal triglyceride transfer protein in a fructosefed hamster model. J Biol Chem2000; 275: 8416–8425.

    Google Scholar 

  74. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science1999; 283: 1544–1548.

    Google Scholar 

  75. Qiu W, Kohen Avramoglu R, Dubé N, Chong TM, Naples M, Au C, Sidiropoulos KG, Lewis GFL, Cohn JS, Tremblay ML, Adeli K. Hepatic PTP-1B expression regulates the assembly and secretion of ApoB-containing lipoproteins: Evidence from PTP-1B over-expression, knockout and gene suppression studies. Diabetes2004; in press.

  76. Sparks JD, Phung TL, Bolognino M, Sparks CE. Insulin-mediated inhibition of apolipoprotein Bsecretion requires an intracellular trafficking event and phosphatidylinositol 3-kinase activation: Studies with brefeldin A and wortmannin in primary cultures of rat hepatocytes. Biochem J1996; 313( Pt 2): 567–574.

  77. Borradaile NM, de Dreu LE, Huff MW. Inhibition of net HepG2 cell apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation. Diabetes2003; 52: 2554–2561.

    Google Scholar 

  78. Au WS, Kung HF, Lin MC. Regulation of microsomal triglyceride transfer protein gene by insulin in HepG2 cells: Roles of MAPKerk and MAPKp38. Diabetes2003; 52: 1073–1080.

    Google Scholar 

  79. Bartels ED, Lauritsen M, Nielsen LB. Hepatic expression of microsomal triglyceride transfer protein and in vivosecretion of triglyceride-rich lipoproteins are increased in obese diabetic mice. Diabetes2002; 51: 1233–1239.

    Google Scholar 

  80. Kuriyama H, Yamashita S, Shimomura I, Funahashi T, Ishigami M, Aragane K, Miyaoka K, Nakamura T, Takemura K, Man Z. Toide K, Nakayama N, Fukuda Y, Lin mc, Wetterau JR, Mastsuzawa Y. Enhanced expression of hepatic acyl-coenzyme A synthetase and microsomal triglyceride transfer protein messenger RNAs in the obese and hypertriglyceridemic rat with visceral fat accumulation. Hepatology 1998; 27: 557–562.

    Google Scholar 

  81. Lin MC, Gordon D, Wetterau JR. Microsomal triglyceride trans-fer protein (MTP) regulation in HepG2 cells: Insulin negatively regulates MTP gene expression. J Lipid Res1995; 36: 1073–1081.

    Google Scholar 

  82. Sato R, Miyamoto W, Inoue J, Terada T, Imanaka T, Maeda M. Sterol regulatory element-binding protein negatively regulates microsomal triglyceride transfer protein gene transcription. J Biol Chem1999; 274: 24714–24720.

    Google Scholar 

  83. Hagan DL, Kienzle B, Jamil H, Hariharan N. Transcriptional regulation of human and hamster microsomal triglyceride transfer protein genes. Cell type-specific expression and response to metabolic regulators. J Biol Chem1994; 269: 28737–28744.

    Google Scholar 

  84. Miyake JH, Doung XD, Strauss W, Moore GL, Castellani LW, Curtiss LK, Taylor JM, Davis RA. Increased production of apolipoprotein B-containing lipoproteins in the absence of hyperlipidemia in transgenic mice expressing cholesterol 7alpha-hydroxylase. J Biol Chem2001; 276: 23304–23311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avramoglu, R.K., Adeli, K. Hepatic Regulation of Apolipoprotein B. Rev Endocr Metab Disord 5, 293–301 (2004). https://doi.org/10.1023/B:REMD.0000045100.66675.92

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:REMD.0000045100.66675.92

Navigation