Skip to main content
Log in

Structure-Immunogenicity Relationships of Therapeutic Proteins

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

As more recombinant human proteins become available on the market, the incidence of immunogenicity problems is rising. The antibodies formed against a therapeutic protein can result in serious clinical effects, such as loss of efficacy and neutralization of the endogenous protein with essential biological functions. Here we review the literature on the relations between the immunogenicity of the therapeutic proteins and their structural properties. The mechanisms by which protein therapeutics can induce antibodies as well as the models used to study immunogenicity are discussed. Examples of how the chemical structure (including amino acid sequence, glycosylation, and pegylation) can influence the incidence and level of antibody formation are given. Moreover, it is shown that physical degradation (especially aggregation) of the proteins as well as chemical decomposition (e.g., oxidation) may enhance the immune response. To what extent the presence of degradation products in protein formulations influences their immunogenicity still needs further investigation. Immunization of transgenic animals, tolerant for the human protein, with well-defined, artificially prepared degradation products of therapeutic proteins may shed more light on the structure-immunogenicity relationships of recombinant human proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Schernthaner. Immunogenicity and allergenic potential of animal and human insulins. Diabetes Care 16:155-165 (1993).

    Google Scholar 

  2. G. Walsh. Pharmaceutical biotechnology products approved within the European Union. Eur. J. Pharm. Biopharm. 55:3-10 (2003).

    Google Scholar 

  3. F. Adair and D. Ozanne. The immunogenicity of therapeutic proteins. BioPharm February:30-36 (2002).

    Google Scholar 

  4. H. F. Bunn. Drug-induced autoimmune red-cell aplasia. N. Engl. J. Med. 346:522-523 (2002).

    Google Scholar 

  5. N. Casadevall, J. Nataf, B. Viron, A. Kolta, J. J. Kiladjian, P. Martin-Dupont, P. Michaud, T. Papo, V. Ugo, I. Teyssandier, B. Varet, and P. Mayeux. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N. Engl. J. Med. 346:469-475 (2002).

    Google Scholar 

  6. S. K. Gershon, H. Luksenburg, T. R. Cote, and M. M. Braun. Pure red-cell aplasia and recombinant erythropoietin. N. Engl. J. Med. 346:1584-1586 (2002).

    Google Scholar 

  7. M. F. Bachmann, U. H. Rohrer, T. M. Kundig, K. Burki, H. Hengartner, and R. M. Zinkernagel. The influence of antigen organization on B cell responsiveness. Science 262:1448-1451 (1993).

    Google Scholar 

  8. N. R. Pritchard and K. G. Smith. B cell inhibitory receptors and autoimmunity. Immunology 108:263-273 (2003).

    Google Scholar 

  9. B. Chackerian, P. Lenz, D. R. Lowy, and J. T. Schiller. Determinants of autoantibody induction by conjugated papillomavirus virus-like particles. J. Immunol. 169:6120-6126 (2002).

    Google Scholar 

  10. F. Matesanz and A. Alcina. Induction of autoantibodies to different interleukin-2 allotypes. J. Autoimmun. 12:221-227 (1999).

    Google Scholar 

  11. M. Van Ghelue, U. Moens, S. Bendiksen, and O. P. Rekvig. Autoimmunity to nucleosomes related to viral infection: a focus on hapten-carrier complex formation. J. Autoimmun. 20:171-182 (2003).

    Google Scholar 

  12. J. L. Ottesen, P. Nilsson, J. Jami, D. Weilguny, M. Duhrkop, D. Bucchini, S. Havelund, and J. M. Fogh. The potential immunogenicity of human insulin and insulin analogues evaluated in a transgenic mouse model. Diabetologia 37:1178-1185 (1994).

    Google Scholar 

  13. A. V. Palleroni, A. Aglione, M. Labow, M. J. Brunda, S. Pestka, F. Sinigaglia, G. Garotta, J. Alsenz, and A. Braun. Interferon immunogenicity: preclinical evaluation of interferon-alpha 2a. J. Interferon Cytokine Res. 17:S23-S27 (1997).

    Google Scholar 

  14. T. A. Stewart, P. G. Hollingshead, S. L. Pitts, R. Chang, L. E. Martin, and H. Oakley. Transgenic mice as a model to test the immunogenicity of proteins altered by site-specific mutagenesis. Mol. Biol. Med. 6:275-281 (1989).

    Google Scholar 

  15. C. M. Zwickl, K. S. Cocke, R. N. Tamura, L. M. Holzhausen, G. T. Brophy, P. H. Bick, and D. Wierda. Comparison of the immunogenicity of recombinant and pituitary human growth hormone in rhesus monkeys. Fundam. Appl. Toxicol. 16:275-287 (1991).

    Google Scholar 

  16. A. Braun, L. Kwee, M. A. Labow, and J. Alsenz. Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon alpha (IFN-alpha) in normal and transgenic mice. Pharm. Res. 14:1472-1478 (1997).

    Google Scholar 

  17. M. Brickelmaier, P. S. Hochman, R. Baciu, B. Chao, J. H. Cuervo, and A. Whitty. ELISA methods for the analysis of antibody responses induced in multiple sclerosis patients treated with recombinant interferon-beta. J. Immunol. Methods 227:121-135 (1999).

    Google Scholar 

  18. E. Hochuli. Interferon immunogenicity: technical evaluation of interferon-alpha 2a. J. Interferon Cytokine Res. 17:S15-S21 (1997).

    Google Scholar 

  19. P. Fireman, S. E. Fineberg, and J. A. Galloway. Development of IgE antibodies to human (recombinant DNA), porcine, and bovine insulins in diabetic subjects. Diabetes Care 5:119-125 (1982).

    Google Scholar 

  20. S. E. Fineberg, J. A. Galloway, and N. S. Fineberg. J. Goldman. Effects of species of origin purification levels and formulation on insulin immunogenicity. Diabetes 32:592-599 (1983).

    Google Scholar 

  21. X. Du and J. G. Tang. Effects of deleting A19 tyrosine from insulin. Biochem. Mol. Biol. Int. 44:507-513 (1998).

    Google Scholar 

  22. H. Lis and N. Sharon. Protein glycosylation. Structural and functional aspects. Eur. J. Biochem. 218:1-27 (1993).

    Google Scholar 

  23. C. F. Goochee and T. Monica. Environmental effects on protein glycosylation. Biotechnology (N Y) 8:421-427 (1990).

    Google Scholar 

  24. J. G. Gribben, S. Devereux, N. S. Thomas, M. Keim, H. M. Jones, A. H. Goldstone, and D. C. Linch. Development of antibodies to unprotected glycosylation sites on recombinant human GM-CSF. Lancet 335:434-437 (1990).

    Google Scholar 

  25. G. R. Adolf, I. Kalsner, H. Ahorn, I. Maurer-Fogy, and K. Cantell. Natural human interferon-alpha 2 is O-glycosylated. Biochem. J. 276:511-518 (1991).

    Google Scholar 

  26. P. Kontsek, H. Liptakova, and E. Kontsekova. Immunogenicity of interferon-alpha 2 in therapy: structural and physiological aspects. Acta Virol. 43:63-70 (1999).

    Google Scholar 

  27. C. B. Colby, M. Inoue, M. Thompson, and Y. H. Tan. Immunologic differentiation between E. coli and CHO cell-derived recombinant and natural human beta-interferons. J. Immunol. 133:3091-3095 (1984).

    Google Scholar 

  28. D. Bhadra, S. Bhadra, P. Jain, and N. K. Jain. Pegnology: a review of PEG-ylated systems. Pharmazie 57:5-29 (2002).

    Google Scholar 

  29. F. F. Davis. The origin of pegnology. Adv. Drug Deliv. Rev. 54:457-458 (2002).

    Google Scholar 

  30. F. M. Veronese. Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22:405-417 (2001).

    Google Scholar 

  31. K. Rajender Reddy, M. W. Modi, and S. Pedder. Use of peginterferon alfa-2a (40 KD) (Pegasys) for the treatment of hepatitis C. Adv. Drug Deliv. Rev. 54:571-586 (2002).

    Google Scholar 

  32. C. M. Perry and B. Jarvis. Peginterferon-alpha-2a (40 kD): a review of its use in the management of chronic hepatitis C. Drugs 61:2263-2288 (2001).

    Google Scholar 

  33. K. D. Hinds and S. W. Kim. Effects of PEG conjugation on insulin properties. Adv. Drug Deliv. Rev. 54:505-530 (2002).

    Google Scholar 

  34. D. C. Robbins, S. M. Cooper, S. E. Fineberg, and P. M. Mead. Antibodies to covalent aggregates of insulin in blood of insulin-using diabetic patients. Diabetes 36:838-841 (1987).

    Google Scholar 

  35. J. C. Ryff. Clinical investigation of the immunogenicity of interferon-alpha 2a. J. Interferon Cytokine Res. 17:S29-S33 (1997).

    Google Scholar 

  36. W. V. Moore and P. Leppert. Role of aggregated human growth hormone (hGH) in development of antibodies to hGH. J. Clin. Endocrinol. Metab. 51:691-697 (1980).

    Google Scholar 

  37. M. Xie and R. L. Schowen. Secondary structure and protein deamidation. J. Pharm. Sci. 88:8-13 (1999).

    Google Scholar 

  38. M. C. Lai and E. M. Topp. Solid-state chemical stability of proteins and peptides. J. Pharm. Sci. 88:489-500 (1999).

    Google Scholar 

  39. J. L. Cleland, M. F. Powell, and S. J. Shire. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit. Rev. Ther. Drug Carrier Syst. 10:307-377 (1993).

    Google Scholar 

  40. H. T. Wright. Sequence and structure determinants of the nonenzymatic deamidation of asparagine and glutamine residues in proteins. Protein Eng. 4:283-294 (1991).

    Google Scholar 

  41. W. Chen, N. J. Ede, D. C. Jackson, J. McCluskey, and A. W. Purcell. CTL recognition of an altered peptide associated with asparagine bond rearrangement. Implications for immunity and vaccine design. J. Immunol. 157:1000-1005 (1996).

    Google Scholar 

  42. H. Schellekens. Bioequivalence and the immunogenicity of biopharmaceuticals. Nat. Rev. Drug Discov. 1:457-462 (2002).

    Google Scholar 

  43. R. E. Chance, E. P. Kroeff, J. A. Hoffmann, and B. H. Frank. Chemical, physical, and biologic properties of biosynthetic human insulin. Diabetes Care 4:147-154 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Hermeling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermeling, S., Crommelin, D.J.A., Schellekens, H. et al. Structure-Immunogenicity Relationships of Therapeutic Proteins. Pharm Res 21, 897–903 (2004). https://doi.org/10.1023/B:PHAM.0000029275.41323.a6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000029275.41323.a6

Navigation