Skip to main content
Log in

Molecular Reactivity of Busulfan Through Its Experimental Electrostatic Properties in the Solid State

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. In the route of developing novel liquid phase formulations based on the encapsulation of busulfan into liposomes in nontoxic solvents, drug crystallization inevitably occurs. In order to better understand the reactivity of busulfan, the characterization of its molecular properties was therefore considered as a key point. Also, preliminary attempts to prevent crystallization using cyclodextrins were explored.

Methods. An accurate single-crystal high-resolution X-ray diffraction experiment at 100 K has been carried out. The experimental electron density of busulfan was refined using a multipole model. Busulfan/β-cyclodextrin coprecipitates were analyzed by powder X-ray diffraction and 1H-NMR spectroscopy.

Results. The electrostatic properties of busulfan and the methylsulfonate fragment dipole moment (3.2 D) were determined. The polar moieties play a key role in the crystallization of busulfan, which presents a nucleophilic region surrounding the sulfonate part, whereas the carbon chain displays an electrophilic character. This highlights the subtle busulfan/β-cyclodextrin association.

Conclusions. Busulfan electrostatic properties were used to quantify its chemical reactivity. This explains the difficulty to formulate busulfan into liposomes due to a strong polar character of the methylsulfonate terminal groups. The complexation with cyclodextrins deserves to be further investigated to allow the formulation of busulfan in nontoxic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. G. Galton. Myleran in chronic myeloid leukemia: results of treatment. Lancet 1:208-213 (1953).

    Google Scholar 

  2. L. B. Grochow, R. J. Jones, R. B. Brundrett, H. G. Braine, T. L. Chen, R. Saral, G. W. Santos, and O. M. Colvin. Pharmacokinetics of busulfan: correlation with veno-occlusive disease in patients undergoing bone marrow transplantation. Cancer Chemother. Pharmacol. 25:55-61 (1989).

    Google Scholar 

  3. G. Vassal, S. Koscielny, D. Challine, D. Valteau-Couanet, I. Boland, A. Deroussent, J. Lemerle, A. Gouyette, and O. Hartmann. Busulfan disposition and hepatic veno-occlusive disease in children undergoing bone marrow transplantation. Cancer Chemother. Pharmacol. 37:247-253 (1996).

    Google Scholar 

  4. F. Baron, M. Deprez, and Y. Beguin. The veno-occlusive disease of the liver. Haematologica 82:718-725 (1997).

    Google Scholar 

  5. E. Olavarria, M. Hassan, A. Eades, C. Nilsson, A. Timms, J. Matthews, C. Craddock, E. Kanfer, J. Apperley, and J. Goldman. A phase I/II study of multiple-dose intravenous busulfan as myeloablation prior to stem cell transplantation. Leukemia 14:1954-1959 (2000).

    Google Scholar 

  6. R. Mackenna, S. Neidle, R. Kuroda, and B. W. Fox. Structures of three DNA cross-linking agents, ethane-1,2-di(methylsulfonate), propane-1,3-di(methylsulfonate) and n-butane-1,4-di(methylsulfonate). Acta Crystallogr. C45:311-314 (1989).

    Google Scholar 

  7. R. F. W. Bader. Atoms in Molecules: A Quantum Theory. Clarendon Press, Oxford, 1990.

    Google Scholar 

  8. K. H. Frömming and J. Szejtli (eds). Cyclodextrins in Pharmacy. Topics in Inclusion Science, Vol. 5, Kluwer Academic Publishers, Dordrecht; Boston., 1994.

    Google Scholar 

  9. J. Szejtli. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98:1743-1753 (1998).

    Google Scholar 

  10. J. Bouligand. Développement de nanosphères furtives de busulfan. DEA Report. Université Paris V. (2001).

    Google Scholar 

  11. Siemens (BRUKER-AXS) Analytical X-ray Instruments Inc. SAINT (6.36A) and SADABS (2.05). Data Collection and Processing Software for the SMART System (5.054). Siemens, Madison, WI, 1998.

    Google Scholar 

  12. R. H. Blessing. Outlier treatment in data merging. J. Appl. Crystallogr. 30:421-426 (1997).

    Google Scholar 

  13. J. Rodriguez-Carvajal. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B. 192:55-69 (1993).

    Google Scholar 

  14. G. M. Sheldrick. SHELXL97 and SHELXS97: Program for the refinement of crystal structures. University of Göettingen, Germany. (1997).

    Google Scholar 

  15. L. J. Farrugia. WINGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 32:837-838 (1999).

    Google Scholar 

  16. N. K. Hansen and P. Coppens. Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr. A34:909-921 (1978).

    Google Scholar 

  17. E. Clementi and C. Roetti. Atomic data and nuclear data tables, Academic Press, New York 14:177-178 (1974).

    Google Scholar 

  18. E. Clementi and D. L. Raimondi. Atomic screening constants for SCF functions. J. Chem. Phys. 38:2686-2689 (1963).

    Google Scholar 

  19. P. Coppens, T. N. Guru, P. Leung, E. D. Stevens, P. Becker, and Y. W. Yang. Net atomic charges and molecular dipole moments from spherical-atom X-ray refinements, and the relation between atomic charge and shape. Acta Crystallogr. A35:63-72 (1979).

    Google Scholar 

  20. M. N. Burnett and C. K. Johnson. ORTEP-III report ORNL-6895. Oak Ridge International Laboratory, Tennessee. (1996).

    Google Scholar 

  21. N. E. Ghermani, N. Bouhmaida, and C. Lecomte. ELECTROS, STATDENS, FIELD+: Computer programs to calculate electrostatic properties from high resolution X-ray diffraction. Internal report UMR CNRS 7036, Université Henri Poincaré, Nancy 1, France; MR CNRS 8612, Université Paris XI, France; UMR CNRS 8612 Université Cadi Ayyad, Morocco. (dy1992–2003).

  22. M. Souhassou. Atomic Properties from Experimental Electron Densities: Program Newprop-Int, 19th European Crystallographic Meeting, Nancy, France, August 25–31 2000, Abstract N° S2-m2-p2, P. 195 (also LCM3B Internal Report, Université Henri Poincaré, Nancy 1, France).

  23. Y. A. Abramov. On the possibility of kinetic energy density evaluation from the experimental electron-density distribution. Acta Crystallogr. A53:264-272 (1997).

    Google Scholar 

  24. N. Bouhmaida, N. E. Ghermani, C. Lecomte, and A. Thalal. Molecular fragment electric moments derived from the fit of the experimental electrostatic potential. Application to the water molecule. Acta Crystallogr. A55:729-738 (1999).

    Google Scholar 

  25. F. H. Allen. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. B58:380-388 (2002).

    Google Scholar 

  26. D. Cruickshank and M. Eisenstein. The role of d functions in ab-initio calculations. Part 1. The deformation densities of H3NSO3 and SO3 -. J. Mol. Struct. 130:143-156 (1985).

    Google Scholar 

  27. B. Dittrich, T. Koritsánszky, M. Grosche, W. Scherer, R. Flaig, A. Wagner, H. G. Krane, H. Kessler, C. Riemer, A. M. M. Schreurs, and P. Luger. Reproducability and transferability of topological properties; experimental charge density of the hexapeptide cyclo-(D,L-Pro)2-(L-Ala)4 monohydrate. Acta Crystallogr. B58:721-727 (2002).

    Google Scholar 

  28. I. Rozas and D. F. Weaver. Ab-initio study of the methylsulfonate and phenylsulfonate anions. J. Chem. Soc. Perkin Trans. 2 3:461-466 (1996).

    Google Scholar 

  29. A. Abramov, A. V. Volkov, and P. Coppens. On the evaluation of molecular dipole moments from multipole refinement of X-ray diffraction data. Chem. Phys. Lett. 311:81-86 (1999).

    Google Scholar 

  30. D. Lide (ed). Handbook of Chemistry and Physics, 77th ed. CRC, New York. (1996).

    Google Scholar 

  31. T. Steiner and G. Koellner. Crystalline β-cyclodextrin hydrate at various humidities: fast, continuous, and reversible dehydration studied by X-ray diffraction. J. Am. Chem. Soc. 116(12):5122-5128 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nour Eddine Ghermani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghermani, N.E., Spasojević-de Biré, A., Bouhmaida, N. et al. Molecular Reactivity of Busulfan Through Its Experimental Electrostatic Properties in the Solid State. Pharm Res 21, 598–607 (2004). https://doi.org/10.1023/B:PHAM.0000022406.04888.f1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000022406.04888.f1

Navigation