Skip to main content
Log in

Differential Adhesion of Normal and Inflamed Rat Colonic Mucosa by Charged Liposomes

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To study the adhesion properties of charged liposomes to the healthy and inflamed (colitis-induced) rat intestinal epithelium.

Methods. Neutral, positively charged, and negatively charged liposomes were prepared and tagged. The cationic or anionic liposomes contained increasing amounts (13, 22, or 36 mol%) of either the cationic lipid dimethyl-dioctadecylammoniumbromide (DODAB) or the anionic lipid 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DSPG). Colitis was induced in rats by DNBS. Adhesion of the various types of liposomes was assessed in rat colon sacs. The effects of charge type, charge density (mol%), liposome size, and incubation time on the adhesion of the liposomes were compared in the inflamed and healthy epithelial tissues.

Results. Three times as many cationic liposomes adhered to the healthy colonic mucosa than neutral or anionic liposomes. However, anionic liposome adherence to the inflamed colonic mucosa was 2-fold that of either neutral or cationic liposomes (a finding that was verified by charged-dyes studies). Adherence was directly correlated with charge density. An inverse correlation was identified between cationic liposome size and healthy tissue adherence in short incubation periods. The adherence of cationic liposomes, which was also found to be time-dependent, decreased in healthy mucosa in the presence of high concentrations of aqueous Mg 2+ rinse.

Conclusions. Anionic liposomes could be useful for the topical delivery of anti-inflammatory drugs in inflammatory bowel disease therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Christensen. 5-Aminosalicylic acid containing drugs. Delivery, fate, and possible clinical implications in man. Dan. Med. Bull. 47:20-41 (2000).

    Google Scholar 

  2. P. Rutgeerts. The use of oral topically acting glucocorticosteroids in the treatment of inflammatory bowel disease. Mediators Inflamm. 7:137-140 (1998).

    Google Scholar 

  3. S. Ardizzone and G. B. Porro. Inflammatory bowel disease: new insights into pathogenesis and treatment. J. Intern. Med. 252:475-496 (2002).

    Google Scholar 

  4. K. P. Pavlick, F. S. Laroux, J. Fuseler, R. E. Wolf, L. Gray, J. Hoffman, and M. B. Grisham. Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease. Free Radic. Biol. Med. 33:311-322 (2002).

    Google Scholar 

  5. S. Blau, R. Kohen, P. Bass, and A. Rubinstein. The effect of local treatment with cationized antioxidant enzymes on experimental colitis in the rat. Pharm. Res. 17:1077-1084 (2000).

    Google Scholar 

  6. A. Rubinstein, S. Blau, P. Bass, and R. Kohen. The effect of adhesive antioxidant enzymes on experimental colitis in the rat. In K. Park and R. J. Mrsny (eds.), Controlled Drug Delivery, Designing Technologies for the Future, vol 752. ACS, Washington DC, 2000 pp. 78-89.

    Google Scholar 

  7. S. Blau, N. Levin, B. Schwartz, and A. Rubinstein. Adsorption of cationized bovine serum albumin onto epithelial crypt fractions of therat colon. J. Pharm. Sci. 90:1516-1522 (2001).

    Google Scholar 

  8. C. J. Dunn, A. J. Wagstaff, C. M. Perry, G. L. Plosker, and K. L. Goa. Cyclosporin: an updated review of the pharmacokinetic properties, clinical efficacy and tolerability of a microemulsion-based formulation (neoral)1 in organ transplantation. Drugs 61:1957-2016 (2001).

    Google Scholar 

  9. J. A. Rogers and K. E. Anderson. The potential of liposomes in oral drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 15:421-480 (1998).

    Google Scholar 

  10. T. Lian and R. J. Ho. Trends and developments in liposome drug delivery systems. J. Pharm. Sci. 90:667-680 (2001).

    Google Scholar 

  11. T. Gershanik and S. Benita. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur. J. Pharm. Biopharm. 50:179-188 (2000).

    Google Scholar 

  12. N. Venkatesan and S. P. Vyas. Polysaccharide coated liposomes for oral immunization—development and characterization. Int. J. Pharm. 203:169-177 (2000).

    Google Scholar 

  13. K. Iwanaga, S. Ono, K. Narioka, M. Kakemi, K. Morimoto, S. Yamashita, Y. Namba, and N. Oku. Application of surface-coated liposomes for oral delivery of peptide: effects of coating the liposome's surface on the GI transit of insulin. J. Pharm. Sci. 88:248-252 (1999).

    Google Scholar 

  14. N. Yerushalmi and R. Margalit. Bioadhesive, collagen-modified liposomes: molecular and cellular level studies on the kinetics of drug release and on binding to cell monolayers. Biochim. Biophys. Acta 1189:13-20 (1994).

    Google Scholar 

  15. C. M. Lehr. Lectin-mediated drug delivery: the second generation of bioadhesives. J. Control. Rel. 65:19-29 (2000).

    Google Scholar 

  16. C. R. Miller, B. Bondurant, S. D. McLean, K. A. McGovern, and D. F. O'Brien. Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry 37:12875-12883 (1998).

    Google Scholar 

  17. R. J. Cristiano. Targeted, non-viral gene delivery for cancer gene therapy. Frontiers Biosci. 3:D1161-D1170 (1998).

    Google Scholar 

  18. S. Blau, T. T. Al-Jubeh, S. Moody Haupt, and A. Rubinstein. Drug targeting by surface cationization. Crit. Rev. Ther. Drug Carr. Sys. 17:425-466 (2000).

    Google Scholar 

  19. G. Haran, R. Cohen, L. K. Bar, and Y. Barenholz. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim. Biophys. Acta 1151:201-215 (1993).

    Google Scholar 

  20. Y. Barenholz. Cholesterol and other membrane active sterols: from membrane evolution to “rafts.” Prog. Lipid Res. 41:1-5 (2002).

    Google Scholar 

  21. D. D. Lasic. Novel applications of liposomes. Trends Biotechnol. 16:307-321 (1998).

    Google Scholar 

  22. J. L. Wallace, T. Le, L. Carter, C. B. Appleyard, and P. L. Beck. Hapten-induced chronic colitis in the rat: alternatives to trinitrobenzene sulfonic acid. J. Pharmacol. Toxicol. Methods 33:237-239 (1995).

    Google Scholar 

  23. J. E. Krawisz, P. Sharon, and W. F. Stenson. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology 87:1344-1350 (1984).

    Google Scholar 

  24. M. B. Grisham, J. N. Benoit, and D. N. Granger. Assessment of leukocyte involvement during ischemia and reperfusion of intestine. Methods Enzymol. 186:729-742 (1990).

    Google Scholar 

  25. J. H. Zar. (ed.). Biostatistical Analysis 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1984.

    Google Scholar 

  26. A. T. Florence. The oral absorption of micro-and nanoparticulates: neither exeptional, nor unusual. Pharm. Res. 14:259-266 (1997).

    Google Scholar 

  27. E. Mathiowitz, J. S. Jacob, Y. S. Jong, G. P. Carino, D. E. Chickering, P. Chaturvedi, C. A. Santos, K. Vijayaraghavan, S. Montgomery, M. Bassett, and C. Morrell. Biologically erodable microspheres as potential oral drug delivery systems. Nature 386(6623):410-414 (1997).

    Google Scholar 

  28. I. M. van der Lubben, J. C. Verhoef, G. Borchard, and H. E. Junginger. Chitosan for mucosal vaccination. Adv. Drug Deliv. Rev. 52:139-144 (2001).

    Google Scholar 

  29. W. M. Barbour and D. Hopwood. Uptake of cationized ferritin by colonic epithelium. J. Pathol. 139:167-178 (1983).

    Google Scholar 

  30. V. V. Kumar. Complementary molecular shapes and additivity of the packing parameter of lipids. Proc. Natl. Acad. Sci. U. S. A. 88:444-448 (1991).

    Google Scholar 

  31. J. N. Israelachvili. Intermolecular and Surface Forces, 2nd ed. Academic Press, New York, 1992.

    Google Scholar 

  32. P. J. Watts and T. Illum. Colonic drug delivery. Drug Dev. Ind. Pharm. 23:893-913 (1997).

    Google Scholar 

  33. R. Nagashima. Mechanisms of action of sucralfate. J. Clin. Gastroenterol. 3:117-127 (1981).

    Google Scholar 

  34. S. C. Bischoff, J. Wedemeyer, A. Herrmann, P. N. Meier, C. Trautwein, Y. Cetin, H. Maschek, M. Stolte, M. Gebel, and M. P. Manns. Quantitative assessment of intestinal eosinophils and mast cells in inflammatory bowel disease. Histopathology 28:1-13 (1996).

    Google Scholar 

  35. K. Makiyama, S. Kanzaki, K. Yamasaki, W. Zea-Iriarte, and Y. Tsuji. Activation of eosinophils in the pathophysiology of ulcerative colitis. J. Gastroenterol. 30:64-69 (1995).

    Google Scholar 

  36. C. G. Peterson, E. Eklund, Y. Taha, Y. Raab, and M. Carlson. A new method for the quantification of neutrophil and eosinophil cationic proteins in feces: establishment of normal levels and clinical application in patients with inflammatory bowel disease. Am. J. Gastroenterol. 97:1755-1762 (2002).

    Google Scholar 

  37. M. Carlson, Y. Raab, C. Peterson, R. Hallgren, and P. Venge. Increased intraluminal release of eosinophil granule proteins EPO, ECP, EPX, and cytokines in ulcerative colitis and proctitis in segmental perfusion. Am. J. Gastroenterol. 94:1876-1883 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Rubinstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jubeh, T.T., Barenholz, Y. & Rubinstein, A. Differential Adhesion of Normal and Inflamed Rat Colonic Mucosa by Charged Liposomes. Pharm Res 21, 447–453 (2004). https://doi.org/10.1023/B:PHAM.0000019298.29561.cd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000019298.29561.cd

Navigation