Skip to main content
Log in

Recommendations for the Bioanalytical Method Validation of Ligand-Binding Assays to Support Pharmacokinetic Assessments of Macromolecules

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose.With this publication a subcommittee of the AAPS Ligand Binding Assay Bioanalytical Focus Group (LBABFG) makes recommendations for the development, validation, and implementation of ligand binding assays (LBAs) that are intended to support pharmacokinetic and toxicokinetic assessments of macromolecules.

Methods. This subcommittee was comprised of 10 members representing Pharmaceutical, Biotechnology, and the contract research organization industries from the United States, Canada, and Europe. Each section of this consensus document addresses a specific analytical performance characteristic or aspect for validation of a LBA. Within each section the topics are organized by an assay's life cycle, the development phase, pre-study validation, and in-study validation. Because unique issues often accompany bioanalytical assays for macromolecules, this document should be viewed as a guide for designing and conducting the validation of ligand binding assays.

Results. Values of ±20% (25% at the lower limit of quantification [LLOQ]) are recommended as default acceptance criteria for accuracy (% relative error [RE], mean bias) and interbatch precision (%coefficient of variation [CV]). In addition, we propose as secondary criteria for method acceptance that the sum of the interbatch precision (%CV) and the absolute value of the mean bias (%RE) be less than or equal to 30%. This added criterion is recommended to help ensure that in-study runs of test samples will meet the proposed run acceptance criteria of 4-6-30. Exceptions to the proposed process and acceptance criteria are appropriate when accompanied by a sound scientific rationale.

Conclusions. In this consensus document, we attempt to make recommendations that are based on bioanalytical best practices and statistical thinking for development and validation of LBAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V. P. Shah, K. K. Midha, S. V. Dighe, I. J. McGiveray, J. P. Skelly, A. Yacobi. T. Laylogg, C.T. Viswanathan, C.E. Cook, R.D. McDowall, K.A. Putman, and S. Spector. Analytical methods validation: bioavailability, bioequivalence, and pharmacokinetic studies. J. Pharm. Sci. 81:309-312 (1992).

    Google Scholar 

  2. V. P. Shah, K. K. Midha, S. Dighe, I. J. McGilveray, J. P. Skelly, A. Yacobi, T. Layloff, C. T. Viswanathan, C. E. Cook, R. D. McDowall, K. A. Pittman, and S. Spector. Analytical methods validation: bioavailability, bioequivalence, and pharmacokinetic studies. Pharm. Res. 9:588-592 (1992).

    Google Scholar 

  3. J. W. A. Findlay, W. C. Smith, J. W. Lee, G. D. Nordblom, I. Das, B. S. DeSilva, M. N. Khan, and R. R. Bowsher. Validation of Immunoassays for bioanalysis: A pharmaceutical industry perspective. J. Pharm. Biomed. Anal. 21:1249-1273 (2000).

    Google Scholar 

  4. C. M. Riley and T. W. Rosanke. Development of validation of analytical methods: progress in pharmaceutical and biomedical analysis (vol 3) Elsevier (Pergamon), NY 1996.

    Google Scholar 

  5. V. P. Shah, K. K. Midha, S. Dighe, I. J. McGilveray, J. P. Skelly, A. Yacobi, T. Layloff, C. T. q Viswanathan, C. E. Cook, and R. D. McDowall. Analytical methods validation: bioavailability, bioequivalence and pharmacokinetics studies. Conference Report. Eur J Drug Metabol Pharmacokinetics 16:249-255 (1991).

    Google Scholar 

  6. Guideline on validation of analytical procedures: definitions and terminology International Conference of Harmonization (ICH) of Technical Requirements for the Registration of Pharmaceuticals for Human Use Geneva 1995 (1996).

  7. V. P. Shah, K. K. Midha, J.W.A Findlay, H. M Hill, J. D. Hulse, I. J McGilvary, G. McKay, K. J. Miller, R. N. Patnaik, M.L. Powell, A. Tonnelli, C. T. Viswanathan, and A. Yacobi. Bioanalytical method validation. A revisit with a decade of progress. Pharm. Res. 17:1551-1557 (2000).

    Google Scholar 

  8. K. J. Miller, R. R. Bowsher, A. Celniker, J. Gibbons, S. Gupta, J. W. Lee, J. S. J. Swanson, W. C. Smith, and R. S. Weiner. Workshop on Bioanalytical Methods Validation for Macromolecules: Summary Report. Pharm. Res. 18:1373-1383 (2001).

    Google Scholar 

  9. Guidance for the Industry. Bioanalytical Method Validation US Department of Health and Human Services FDA (CDER) and (CVM) May 2001.

  10. J. O. Westgard. Points of care in using statistics in method comparison studies. Clin. Chem. 44:2240-2242 (1998).

    Google Scholar 

  11. H. Hubert, P. Chiap, J. Crommen, B. Boulanger, E. Chapuzet, N. Mercier, S. Bervoas-Martin, P. Chevalier, D. Grandjean, P. Lagorce, M. Lallier, M. C. Laparra, M. Laurentie, and J. C. Nivet. The SFSTP guide on the validation of chromatographic methods for drug analysis: from the Washington Conference to the laboratory. Analytica Chimica Acta. 391:135-148 (1999).

    Google Scholar 

  12. R. Kringle and D. Hoffman. Stability methods for assessing stability of compounds in whole blood for clinical bioanalysis. Drug Info J. 35:1261-1270 (2001).

    Google Scholar 

  13. U. Timm, M. Wall, and D. Dell. A new approach for dealing with the stability of drugs in biological fluids. J. Pharm. Sci. 74:972-977 (1985).

    Google Scholar 

  14. D. Rodbard, Y. Feldman, M. L. Jaffe, and L. E. M. Miles. Kinetics of Two-Site Immunoradiometric (Sandwich) Assays-II. Immunochem. 15:77-82 (1978).

    Google Scholar 

  15. B. D. Plikaytis, P. F. Holder, L. B. Pais, S. E. Maslanka, L. L. Gheesling, and G. M. Carlone. Determination of parallelism and nonparallelism in bioassay dilution curves. J. Clin. Microbiol. 32:2441-2447 (1994).

    Google Scholar 

  16. R. L. Placket and J. P. Burman. The design of optimum multifactorial experiments. Biometrica 33:305-325 (1946).

    Google Scholar 

  17. J. M. Bland and D. G. Altman. Measuring agreement in method comparison studies. Stat Meth Med Res 8:135-160 (1999).

    Google Scholar 

  18. C. Hartmann, J. Smeyers-Verbeke, W. Penninckx, Y. Vander Heyden, P. Venkeerberghen, and D. L. Massart. Reappraisal of hypothesis testing for method validation; Detection of systematic error by comparing the means of two methods or two laboratories. Analytical Chem. 67:4491-4499 (1995).

    Google Scholar 

  19. S. R. Searle, G. Casella, and C. E. McCulloch. Variance Components Chapter 3. John Wiley & Sons, Inc, New York, NY (1992).

    Google Scholar 

  20. R. W. Mee. β-expectation and β-content tolerance limits for balanced one-way ANOVA random model. Technometrics 26:251-254 (1984).-

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Kelley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeSilva, B., Smith, W., Weiner, R. et al. Recommendations for the Bioanalytical Method Validation of Ligand-Binding Assays to Support Pharmacokinetic Assessments of Macromolecules. Pharm Res 20, 1885–1900 (2003). https://doi.org/10.1023/B:PHAM.0000003390.51761.3d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000003390.51761.3d

Navigation