Skip to main content
Log in

Reduction of Glutamate Uptake into Cerebral Cortex of Developing Rats by the Branched-Chain Alpha-Keto Acids Accumulating in Maple Syrup Urine Disease

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the current study we investigated the effect of the branched-chain alpha-keto acids (BCKA) α-ketoisocaproic (KIC), α-keto-β-methylvaleric (KMV), and α-ketoisovaleric (KIV) acids, which accumulate in maple syrup urine disease (MSUD), on the in vitro uptake of [3H]glutamate by cere-bral cortical slices from rats aged 9, 21, and 60 days of life. We initially observed that glutamate uptake into cerebral cortex of 9- and 21-day-old rats was significantly higher, as compared to that of 60-day-old rats. Furthermore, KIC inhibited this uptake by tissue slices at all ages studied, whereas KMV and KIV produced the same effect only in cortical slices of 21- and 60-day-old rats. Kinetic assays showed that KIC significantly inhibited glutamate uptake in the presence of high glutamate concentrations (50 μM and greater). We also verified that the reduction of glutamate uptake was not due to cellular death, as evidenced by tetrazolium salt and lactate dehydrogenase viability tests of cortical slices in the presence of the BCKA. It is therefore presumed that the reduced glutamate uptake caused by the BCKA accumulating in MSUD may lead to higher extracellular glutamate levels and potentially to excitotoxicity, which may contribute to the neurological dysfunction of the affected individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. Nord, A., Van Doornick, W. J., and Greene, C. 1991. Developmental profile of patients with maple syrup urine disease. J. Inherit. Metab. Dis. 14:881–889.

    Google Scholar 

  2. Chuang, D. T., and Shih V. E. 2001. Disorders of branched chain amino acid and keto acid metabolism. Pages 1971–2005, in Scriver, C. R., Beaudet, A. L., Sly, W. L., Valle, D. (eds.), The Metabolic and Molecular Bases of Inherited Disease, McGraw-Hill, New York.

    Google Scholar 

  3. Nyan, W. L. 1984. Abnormalities in amino acid metabolism in clinical medicine. Norwalk, CT: Appleton-Century-Crofts.

    Google Scholar 

  4. Snyderman, E., Norton, P. M., and Roitman, B. 1964. Maple syrup urine disease, with particular reference to dietotherapy. Pediatrics 34:454–472.

    Google Scholar 

  5. Danner, D. J., and Elsas, L. J. 1989. Disorders of branched chain amino acid and keto acid metabolism. Pages 671–692, in Scriver, C. R., Beaudet, A. L., Sly, W. L., Valle, D. (eds.), The Metabolic Basis of Inherited Disease, McGraw-Hill, New York.

    Google Scholar 

  6. Fonnun, F. 1984. Glutamate: A neurotransmitter in mammalian brain. J. Neurochem. 42:1–11.

    Google Scholar 

  7. Ottersen, O. P., and Storm-Mathisen, J. 1984. Neurons containing or accumulating transmitter amino acids. Pages 141–246, in Björklund, A., Hökfelt, T., Kuhar, M. J. (eds.), Handbook of Chemical Neuroanatomy: Classical Transmitters and Transmitter Receptors in the CNS, Elsevier, Amsterdam.

    Google Scholar 

  8. Collingridge, G. L., and Lester, R. A. J., 1989. Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol. Rev. 40:143–210.

    Google Scholar 

  9. Headley, P. M., and Grillner, S. 1990. Excitatory amino acids and synaptic transmission: The evidence for a physiological function. Trends Pharmacol. Sci. 11:205–211.

    Google Scholar 

  10. Ozawa, S., Kamyia, H., and Tsuzuki, K. 1998. Glutamate receptors in the mammalian central nervous system. Prog. Neurobiol. 54:581–618.

    Google Scholar 

  11. Danbolt N. C. 2001. Glutamate uptake. Prog. Neurobiol. 65:1–105.

    Google Scholar 

  12. Nicholls, D. G. 1993. The glutamatergic nerve terminal. Eur. J. Biochem. 212:613–631.

    Google Scholar 

  13. Maragaskis, N. J., and Rothstein, J. D. 2001. Glutamate transporters in neurologic disease. Arch. Neurol. 58:365–370.

    Google Scholar 

  14. Nieollon, A., and Kerkerian-Le Goff, L. 1983. Presynaptic control of high affinity glutamate uptake in the striatum. Neurosci. Lett. 43:191–196.

    Google Scholar 

  15. Greenamyre, J. T. and Young, A. B. 1989. Excitatory amino acids and Alzheimer's disease. Neurobiol. Aging 10:593–602.

    Google Scholar 

  16. Gilad, G. M., Gilad, V. H., Wyatt, R. J., and Tizabi, Y. 1990. Region-selective stress-induced increase of glutamate uptake and release in rat forebrain. Brain Res. 525:335–338.

    Google Scholar 

  17. Rothstein, J. D., Martin, L. J., and Kuncl, R. W. 1992. Decreased brain and spinal cord glutamate transport in amyotrophic lateral sclerosis. New Engl. J. Med. 326:1464–1468.

    Google Scholar 

  18. Lipton, S. A., and Rosemberg, P. A. 1994. Excitatory amino acid as a final common pathway for neurologic disorders. New Engl. J. Med. 330:613–622.

    Google Scholar 

  19. Price, D. L. 1999. New order from neurologic diseases. Nature 399(Suppl. 24A):3–5.

    Google Scholar 

  20. Kanner, B. I. 1993. Glutamate transporters from brain: A novel neurotransmitter transport family. FEBS Lett. 325:95–99.

    Google Scholar 

  21. Amara, S. G., and Fontana C. K. 2002. Excitatory amino acid transporters: Keeping up with glutamate. Neurochem. Int. 41:313–318.

    Google Scholar 

  22. Frizzo, M. E. S., Lara, D. R., Prokopiuk, A. S., Vargas, C. R., Salbego, C. G., Wajner, M., and Souza, D. O. 2002. Guanosine enhances glutamate uptake in brain cortical slices at normal and excitotoxic conditions. Cell. Mol. Neurobiol. 22:353–363.

    Google Scholar 

  23. Peterson, G. L. 1977. Review of the folin phenol protein quantitation method of Lowry. Anal. Biochem. 83:346–356.

    Google Scholar 

  24. Funchal, C., de Lima Pelaez, P., Oliveira Loureiro, S., Vivian L, Dall Bello Pessutto, F., Vieira de Almeida, L. M., Wofchuk, S. T., Wajner, M., and Pessoa-Pureur, R. 2002. α-Ketoisocaproic acid regulates phosphorylation of intermediate filaments in postnatal rat cortical slices throught ionotropic glutamate receptors. Dev. Brain Res. 139:267–276.

    Google Scholar 

  25. Coitinho, A. S., de Mello, C. F., Fortes Lima, T. T., de Bastiani, J., Rechia Fighera, M., and Wajner, M. 2001. Pharmacological evidence that α-ketoisovaleric acid induces convulsions though GABAergic and glutamatergic mechanisms in rats. Brain Res. 894:68–73.

    Google Scholar 

  26. Tavares, R. G., Santos, C. E. S., Tasca, C. I., Wajner, M., Souza, D. O., and Dutra-Filho, C. S. 2000. Inhibition of glutamate uptake into synaptic vesicles of rat brain by the metabolites accumulating in maple syrup urine disease. J. Neurol. Sci. 181:44–49.

    Google Scholar 

  27. Anderson, K. J., Mason, K. L., McGraw, T. S., Theophilopoulos, D. T., Sapper, M. S., and Burchfield, D. J. 1999. The ontogeny of glutamate receptors and D-aspartate binding sites in the ovine CNS. Dev. Brain Res. 118:69–77.

    Google Scholar 

  28. Furuta, A., Rothstein, J. D., and Martin, L. J. 1997. Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J. Neurosci. 17:8363–8375.

    Google Scholar 

  29. Sutherland, M. L., Delaney, T. A., and Noebels, J. L. 1996. Glutamate transporter mRNA expression in proliferative zones of the developing and adult murine CNS. J. Neurosci. 16:2191–2207.

    Google Scholar 

  30. Rothstein, J. D., Van Kammen, M., Levey, A. I., Martin, L. J., and Kuncl, R. W. 1995. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 38:73–84.

    Google Scholar 

  31. Meldrum, B. S. 2000. Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. J. Nutr. 130:1007S–1015S.

    Google Scholar 

  32. Howell, R. K., and Lee, M. 1963. Influence of alpha-ketoacids on the respiration of brain in vitro. Proc. Soc. Exp. Biol. Med. 113:660–663.

    Google Scholar 

  33. Halestrap, A. P., Brand, M. D., and Denton, R. M. 1974. Inhibition of mitochondrial pyruvate transport by phenylpyruvate and α-ketoisocaproate. Biochem. Biophys. Acta 367:102–108.

    Google Scholar 

  34. Land, J. M., Mowbray, J., and Clark, J. B. 1976. Control of pyruvate and β-hydroxybutirate utilization in rat brain mitochondria and its relevance to phenylketonuria and maple syrup urine disease. J. Neurochem. 26:823–830.

    Google Scholar 

  35. Pilla, C., Cardozo, R. F., Dutra-Filho, C. S., Wyse, A. T., Wajner, M., and Wannmacher, C. M. 2003. Creatine kinase activity from rat brain is inhibited by branched-chain amino acids in vitro. Neurochem. Res. 28:675–679.

    Google Scholar 

  36. Beal, M. E. 1995. Aging, energy and oxidative stress in neurodegenerative diseases. Ann. Neurol. 38:357–366.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funchal, C., Rosa, A.M., Wajner, M. et al. Reduction of Glutamate Uptake into Cerebral Cortex of Developing Rats by the Branched-Chain Alpha-Keto Acids Accumulating in Maple Syrup Urine Disease. Neurochem Res 29, 747–753 (2004). https://doi.org/10.1023/B:NERE.0000018846.66943.30

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000018846.66943.30

Navigation