Skip to main content
Log in

123I-IMT SPECT and 1HMR-Spectroscopy at 3.0T in the Differential Diagnosis of Recurrent or Residual Gliomas: A Comparative Study

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The aim of this investigation was to compare two current non-invasive modalities, single photon emission tomography (SPECT) using 123-iodine-α-methyl tyrosine (123I-IMT) and single-voxel proton magnetic resonance spectroscopy (1H-MRS) at 3.0 T, with regard to their ability to differentiate between residual/recurrent tumors and treatment-related changes in patients pretreated for glioma. The patient population comprised 25 patients in whom recurrent glioma was suspected based on MR imaging. SPECT imaging started 10 min after iv. injection of 300–370 MBq 123I-IMT and was performed using a triple-head system. The IMT uptake was calculated semiquantitatively using regions-of-interest. 1H-MRS was performed at 3.0 T using the single-volume point-resolved spectroscopy (PRESS) technique. Guided by MR imaging volumes-of-interest for spectroscopy were placed into the suspected lesions. Signal intensities of choline-containing compounds (Cho), creatine and phosphocreatine (Cr), and N-acetylaspartate (NAA) were obtained. When using the cut-off of 1.62 for 123I-IMT uptake, the sensitivity, specificity, and accuracy of the 123I-IMT SPECT were 95, 100 and 96%, respectively. For 1H-MRS, the sensitivity, specificity and accuracy were 89, 83 and 88%, respectively, based both on the metabolic ratios of Cho/Cr and Cho/NAA as tumor criterion with cut-off values of 1.11 and 1.17, respectively. In conclusion, 123I-IMT SPECT yielded more favorable results compared to 1H-MRS at distinguishing recurrent and/or residual glioma from post-therapeutic changes and may be particularly valuable when the evaluation of tumor extent is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Byrne TN: Imaging of gliomas. Semin Oncol 21: 162-71, 1994

    Google Scholar 

  2. Nelson SJ: Imaging of brain tumors after therapy. Neuroimaging Clin N Am 9: 801-819, 1999

    Google Scholar 

  3. Leeds NE, Jackson EF: Current imaging techniques for the evaluation of brain neoplasms. Curr Opin Oncol 6: 254-261, 1994

    Google Scholar 

  4. Meyer GJ, Schober O, Hundeshagen H: Uptake of 11C-L-and D-methionine in brain tumors. Eur J Nucl Med 10: 373-376, 1985

    Google Scholar 

  5. Weber W, Wester HJ, Grosu AL, Herz M, Dzewas B, Feldmann HJ, Molls M, Stocklin G, Schwaiger M: O-(2-[18F] fluoroethyl)-L-tyrosine and L-[methyl-11C] methionine uptake in brain tumors: initial results of a comparative study. Eur J Nucl Med 27: 542-549, 2000

    Google Scholar 

  6. Ogawa T, Inugami A, Hatazawa J, Kanno I, Murakami M, Yasui N, Mineura K, Uemura K: Clinical positron emission tomography for brain tumors: comparison of fluordeoxyglucose F18 and L-methyl-11C-methionine. AJNR Am J Neuroradiol 17: 345-353, 1996

    Google Scholar 

  7. Kaschten B, Stevenaert A, Sadzot B, Deprez M, Degueldre C, Del Fiore G, Luxen A, Reznik M: Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluoro-deoxyglucose and/or carbon-11-methionine. J Nucl Med 39: 778-785, 1998

    Google Scholar 

  8. Biersack HJ, Coenen HH, Stocklin G, Reichmann K, Bockisch A, Oehr P, Kashab M, Rollmann O: Imaging of brain tumors with L-3-[123I]Iodo-α methyl tyrosine and SPECT. J Nucl Med 30: 110-112, 1989

    Google Scholar 

  9. Langen K-J, Ziemons K, Kiwit JCW, Herzog H, Kuwert T, Bock WJ, Stöcklin G, Feinendegen LE, Müller-Gärtner HW: [123I]-Iodo-α-methyltyrosine SPECT and [11C]-L-methionine uptake in cerebral gliomas: a comparative study using SPECT and PET. J Nucl Med 38: 517-522, 1997

    Google Scholar 

  10. Langen, K-J, Clauss RP, Holschbach M, Mühlensiepen H, Kiwit JCW, Zilles K, Coenen HH, Müller-Gärtner H-W: Comparison of iodotyrosine and methionine uptake in a rat glioma model. J Nucl Med 39: 1596-1599, 1998

    Google Scholar 

  11. Kuwert T, Woesler B, Morgenroth C, Lerch H, Schafers M, Palkovic S, Matheja P, Brandau W, Wassmann H, Schober O: Diagnosis of recurrent glioma with SPECT and iodine-123-alpha-methyl tyrosine. J Nucl Med 39: 23-27, 1998

    Google Scholar 

  12. Samnick S, Bader JB, Hellwig D, Moringlane JR, Alexander C, Romeike BF, Feiden W, Kirsch CM: Clinical value of iodine-alpha-methyl-L-thyrosine single-photon emission tomography in the differential diagnosis of recurrent brain tumor in patients pretreated for glioma at follow-up. J Clin Oncol 20: 396-404, 2002

    Google Scholar 

  13. Guth-Tougelidis B, Müller St, Mehdorn MM, Knust EJ, Dutschkla K, Reiners Chr: DL-3-123I-Iodo-α methyltyrosine uptake in brain tumor recurrences. Nuklearmedizin 34: 71-75, 1995

    Google Scholar 

  14. Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hanicke W, Sauter R, Hamburger C: Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology 172: 541-548, 1989

    Google Scholar 

  15. Frahm J, Bruhn H, Hanicke W, Merboldt KD, Mursch K, Markakis E: Localized proton NMR spectroscopy of brain tumors using short-echo time STEAM sequences. J Comput Assist Tomogr 15: 915-922, 1991

    Google Scholar 

  16. Kugel H, Heindel W, Ernestus RI, Bunke J, du Mesnil R, Friedmann G: Human brain tumors: spectral patterns with localized H-1 MR Spectroscopy. Radiology 183: 701-709, 1992

    Google Scholar 

  17. Preul MC, Caramanos Z, Collins DL, Villemure JG, Leblanc R, Olivier A, Pokrupa R, Arnold DL: Accurate, non-invasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med 2: 323-325, 1996

    Google Scholar 

  18. Rabinov JD, Lee PL, Barker FG, Louis DN, Harsh IV GR, Rees Cosgrove GR, Chiokka EA, Thornton AF, Loeffel JS, Henson JW Gonzalez RG: In vivo 3-T MR spectroscopy in the distinction of recurrent glioma vs. radiation effects: initial experience. Radiology 225: 871-879, 2002

    Google Scholar 

  19. Taylor JS, Langston JW, Reddick WE, Kingsley PB, Ogg RJ, Pui MH, Kun LE, Jenkins JJ 3rd, Chen G, Ochs JJ, Sanford RA, Heideman RL: Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis. Int J Radiat Oncol Biol Phys 36: 1251-1261, 1996

    Google Scholar 

  20. Dowling Ch, Bollen AW, Noworolski SM, McDermott MW, Barbaro NM, Day MR, Henry RG, Dillon WP, Nelson SJ, Vigneron DB: Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. Am J Neuroradiol 22: 604-612, 2001

    Google Scholar 

  21. Kleihues P, Burger PC, Scheithauer BW: The new WHO classification of brain tumours. Brain Pathol 3: 255-268, 1993

    Google Scholar 

  22. Krummreich C, Holsbach M, Stöcklin G: Direkt electrophilic radioiodination of tyrosine analogues: their in vivo stability and brain uptake in mice. Appl Radiat Isot 45: 929-935, 1994

    Google Scholar 

  23. Langen K-J, Pauleit D, Coenen HH: 3-(123I)-Iodo-a-methyl-L-tyrosne: uptake mechanisms and clinical applications. Nucl Med Biol 29: 625-631, 2002

    Google Scholar 

  24. Chang L: A method for attenuation correction in computed tomography. IEEE Trans Nucl Sci 25: 638-643, 1978

    Google Scholar 

  25. Kuwert T, Morgenroth C, Woesler B, Matheja P, Palkovic S, Vollet B, Schäffers M, Wassmann H, Schober O: Influence of size of regions of interest on the measurement of uptake of iodine-123-α methyl tyrosine by brain tumors. Nucl Med Commun 17: 609-615, 1996

    Google Scholar 

  26. Kuwert T, Probst-Cousin S, Woesler B, Morgenroth C, Lerch H, Matheja P, Palkovic St, Schäfers M, Wassmann H, Gullotta F, Schober O: Iodine-123-α methyl tyrosine in gliomas: correlation with cellular density and proliferative activity. J Nucl Med 38: 1551-1555, 1997

    Google Scholar 

  27. Wilken B, Dechent P, Herms J, Maxton C, Markakis E, Hanefeld F, Frahm J: Quantitative proton magnetic resonance spectroscopy of focal brain lesions. Ped Neurol 23: 22-31, 2000

    Google Scholar 

  28. Londono A, Castillo M, Armao D, Kwock L, Suzuki K: Unusual MR spectroscopic imaging pattern of an astrocytoma: lack of elevated choline and high myo-inositol and glycine levels. Am J Neuroradiol 24: 942-945, 2003

    Google Scholar 

  29. Bowen BC: Glial neoplasms without elevated choline-creatine ratios. Am J Neuroradiol 24: 782-784, 2003

    Google Scholar 

  30. Nelson SJ: Imaging of brain tumors after therapy. Neuroimaging Clin N Am 9: 801-819, 1999

    Google Scholar 

  31. Utriainen M, Komu M, Vuorinen V, Lehikoinen P, Sonninen P, Kurki T, Utriainen T, Roivainen A, Kalimo H, Minn H: Evaluation of brain tumor metabolism with [11C] choline PET and 1H-MRS. J Neurooncol 62: 329-338, 2003

    Google Scholar 

  32. Grosu AL, Feldmann H, Dick S, Dzewas B, Nieder C, Gumprecht H, Frank A, Schweiger M, Molls M, Weber WA: Implications of IMT SPECT for postoperative radiotherapy planning in patients with gliomas. Int J Radiat Oncol Phys 54: 842-854, 2002

    Google Scholar 

  33. Träber F, Block W, Flacke S, Lamerich R, Schüller H, Urbach H, Keller E, Schild HH: 1H-MR Spectroscopy of brain tumors in the course of radiation therapy: use of fast spectroscopic imaging and single-voxel spectroscopy for diagnosing recurrence. Fortschr Röntgenstr 174: 33-42, 2002

    Google Scholar 

  34. Kallen K, Burtscher IM, Holtas S, Ryding E, Rosen I: 201Thallium SPECT and 1H-MRS compared with MRI in chemotherapy monitoring of high-grade malignant astrocytomas. J Neurooncol 46: 173-185, 2000

    Google Scholar 

  35. Alger JR, Frank JA, Fulham MJ, DeSouza BX, Duhaney MO, Inscoe SW, Black JL, van Zijl PC, Moonen CT et al.: Metabolism of human gliomas: assessment with H-1 MR spectroscopy and F-18 fluorodeoxyglucose PET. Radiology 177: 617-618, 1990

    Google Scholar 

  36. Fuhlam MJ, Bizzi A, Dietz MJ, Shish HH, Raman R, Sobering Gs, Frank JA, Dwyer AJ, Alger JR, Di Chiro G: Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. Radiology 185: 675-686, 1992

    Google Scholar 

  37. Schlemmer HP, Bachert P, Herfarth KK, Zuna I, Debus J, Kaick G: Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic radiotherapy. Am J Neuroradiol 22: 1316-1324, 2001

    Google Scholar 

  38. Goenen O, Gruber St, Li BSY, Mlynárik V, Moser E: Multivoxel 3D proton spectroscopy in the brain at 1.5 vs. 3.0 T: signal-to-noise ratio and resolution comparison. Am J Neuroradiol 22: 1727-1731, 2001

    Google Scholar 

  39. Bruhn H, Michaelis T, Merboldt KD, Hänicke W, Gyngell ML, Hamburger C, Frahm J: On the interpretation of proton NMR spectra from brain tumours in vivo and in vitro. NMR Biomed 5: 253-258, 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plotkin, M., Eisenacher, J., Bruhn, H. et al. 123I-IMT SPECT and 1HMR-Spectroscopy at 3.0T in the Differential Diagnosis of Recurrent or Residual Gliomas: A Comparative Study. J Neurooncol 70, 49–58 (2004). https://doi.org/10.1023/B:NEON.0000040810.77270.68

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEON.0000040810.77270.68

Navigation