Skip to main content
Log in

Postnatal Physiological Development of Rats after Acute Prenatal Hypoxia

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The aim of the present work was to identify the characteristics of the physiological development of the brain and the formation of behavior in rats subjected to hypoxia on day 13.5 of embryogenesis. These animals showed delayed development and changes in nerve tissue structure in the sensorimotor cortex, along with disturbances to the processes forming normal movement responses during the first month after birth. These changes were partially compensated with age, though adult animals subjected to acute prenatal hypoxia were less able to learn new complex manipulatory movements. Alterations in nerve tissue structure and changes in the neuronal composition of the sensorimotor cortex correlated with the times of appearance of behavioral impairments at different stages of ontogenesis. Thus, changes in the conditions in which the body is formed during a defined period of embryogenesis lead to abnormalities in the process of ontogenetic development and the ability to learn new movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ya. Buresh, O. Bureshova, and J. P. Houston, Methods and Basic Experiments in Studies of the Brain and Behavior [in Russian], Moscow (1991).

  2. N. M. Dubrovskaya and I. A. Zhuravin, “The role of the cholinergic system of the dorsal and ventral striatum of the rat brain in the regulation of learning behavior,” Ros. Fiziol. Zh. im. I. M. Sechenova, 83, No. 1-2, 83–89 (1997).

    Google Scholar 

  3. N. M. Dubrovskaya, D. O. Potapov, and N. L. Tumanova, “Effects of prenatal hypoxia on the development of rats during postnatal ontogenesis,” Vestn. Molodykh Uchenykh. 4. Seriya Nauki o Zhizni (Young Scientists News. 4. Life Sciences Series) 1, 9–15 (2002).

    Google Scholar 

  4. P. N. Ermokhin, Histopathology of the Central Nervous System. An Atlas of Microphotographs [in Russian], Meditsina, Moscow (1969).

    Google Scholar 

  5. Yu. M. Zhabotinskii, Normal and Pathological Neuron Morphology [in Russian], Meditsina, Moscow (1965).

    Google Scholar 

  6. I. A. Zhuravin, “Effects of conditions of prenatal development on the formation of the central mechanisms of regulation of motor functions,” in: Questions of Human Ecology [in Russian], Arkhangel'sk (2000), pp. 83–87.

  7. I. A. Zhuravin, “Formation of the central mechanisms of regulation of motor functions in mammals depending on the conditions of embryonic development,” Zh. Évolyuts. Biokhim. Fiziol., 38, No. 5, 478–484 (2002).

    Google Scholar 

  8. I. A. Zhuravin and N. M. Dubrovskaya, “Involvement of the cholinergic system of the sensorimotor cortex of the rat brain in controlling different types of movement,” Zh. Vyssh. Nerv. Deyat., 50, No. 1, 103–112 (1999).

    Google Scholar 

  9. I. A. Zhuravin, N. L. Tumanova, and D. O. Potapov, “Structural changes in the sensorimotor cortex of neonatal rats after prenatal hypoxia,” Zh. Évolyuts. Biokhim. Fiziol., 37, No. 6, 518–520 (2001).

    Google Scholar 

  10. M. E. Ioffe, Corticospinal Mechanisms of Operant Motor Reactions [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  11. M. E. Ioffe, Mechanisms of Motor Learning [in Russian], Nauka, Moscow (1991).

    Google Scholar 

  12. V. G. Kassil', V. A. Otellin, L. I. Khozhai, and V. B. Kostkin, “Critical periods of brain development,” Ros. Fiziol. Zh. im. I. M. Sechenova, 86, No. 11, 1418–1425 (2000).

    Google Scholar 

  13. S. M. Lavrenova, N. N. Nalivaeva, and I. A. Zhuravin, “Acetylcholinesterase activity in the sensorimotor cortex in early ontogenesis in rats subjected to prenatal hypoxia,” Zh. Évolyuts. Biokhim. Fiziol., 39, No. 2, 154–159 (2003).

    Google Scholar 

  14. E. V. Maksimova, Ontogenesis of the Cerebral Cortex [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  15. N. N. Nalivaeva, B. I. Klement'ev, S. A. Plesneva, U. B. Chekulaeva, and I. A. Zhuravin,, “Effects of hypoxia on the state of cell membranes in the right and left hemispheres in rat embryos,” Zh. Évolyuts. Biokhim. Fiziol., 34, No. 4, 485–491 (1998).

    Google Scholar 

  16. S. N. Olenev, The Developing Brain. Cellular, Molecular, and Genetic Aspects of Neuroembryology [in Russian], Nauka, Leningrad (1978).

    Google Scholar 

  17. G. M. Savel'eva, L. G. Sichinava, G. D. Dzhivilegova, and G. I. Shalina, “Perinatal hypoxic lesions of the CNS in neonates,” Vestn. Ros. Akad. Med. Nauk, 1, 20–23 (1994).

    Google Scholar 

  18. M. O. Samoilov, Responses of Brain Neurons to Hypoxia [in Russian], Nauka, Leningrad (1985).

    Google Scholar 

  19. P. G. Svetlov, “The theory of critical periods of development and its value for understanding the principles of action of the environment on ontogenesis,” in: Questions in Cytology and General Physiology [in Russian], Academy of Sciences of the USSR Press, Moscow, Leningrad (1960).

  20. J. Altman and K. Sudarshan, “Postnatal development of locomotion in the laboratory rat,” Anim. Behav., 23, 896–920 (1975).

    PubMed  Google Scholar 

  21. R. G. Boutilier and J. St.-Pierre, “Surviving hypoxia without really dying,” Comp. Biochem. Physiol. A. Molecular and Integrative Physiology, 126, No. 4, 481–490 (2000).

    Article  Google Scholar 

  22. J. B. Brierley, “Cerebral hypoxia,” in: Greenfield's Neuropathology, W. Blackwood and A. Corsellis (eds.), Arnold, London (1976), pp. 43–85.

    Google Scholar 

  23. R. E. Burke and K. G. Bainbridge, “Relative loss of the striatal striosome compartment, defined by calbindin-D28k immunostaining, following developmental hypoxic-ischemic injury,” Neurosci., 56, No. 2, 305–315 (1993).

    Article  Google Scholar 

  24. D. W. Choi, “Cerebral hypoxia: some new approaches and unanswered questions,” J. Neurosci., 10, 2493–2501 (1990).

    PubMed  Google Scholar 

  25. J. M. Donatelle, “Growth of the corticospinal tract and development of placing reactions in the postnatal rat,” J. Comp. Neurol., 175, No. 2, 207–232 (1977).

    PubMed  Google Scholar 

  26. D. Grisaru, M. Sternfeld, A. Eldor, D. Glick, and H. Soreq, “Structural roles of acetylcholinesterase variants in biology and pathology,Eur. J. Biochem., 264, 672–686 (1999).

    Article  PubMed  Google Scholar 

  27. J. M. Gleadle and P. J. Ratcliffe, “Hypoxia and the regulation of gene expression,” Mol. Med. Today, 4, No. 3, 122–129 (1998).

    Article  PubMed  Google Scholar 

  28. E. M. Jansen and W. C. Low, “Quantitative analysis of contralateral hemisphere hypertrophy and sensorimotor performance in adult rat following unilateral neonatal ischemic-hypoxic brain injury,” Brain Res., 708, 399–403 (1996).

    Article  Google Scholar 

  29. E. A. Joosten, A. A. Gribnau, and P. J. Dederen, “An anterograde tracer study of the developing corticospinal tract in the rat: three components,” Dev. Brain Res., 36, 121–132 (1987).

    Article  Google Scholar 

  30. P. Lipton, “Ischemic cell death in brain neurons,” Physiol. Rev., 79, 1431–1568 (1999).

    PubMed  Google Scholar 

  31. L. J. Martin, A. Brambrink, R. C. Koehler, and J. Traystman, “Primary sensory and forebrain motor systems in the newborn brain are preferentially damaged by hypoxia-ischemia,” J. Comp. Neurol., 377, No. 2, 262–285 (1997).

    Article  PubMed  Google Scholar 

  32. O. P. Mishra and M. Delivoria-Papadopoulos, “Cellular mechanisms of hypoxic injury in the developing brain,” Brain Res. Bull., 48, 233–238 (1999).

    Article  PubMed  Google Scholar 

  33. D. Mu, W. Liang, G. Zhang, and X. Wu, “The relationship between the c-jun mRNA expression and apoptosis of neurons in rat brain following perinatal ischemic-hypoxia,” Chin. Med. J. (Engl.), 112, No. 1, 40–43 (1999).

    Google Scholar 

  34. C. Nyakas, B. Buwalda, and P. D. M. Luiten, “Hypoxia and brain development,” Prog. Neurobiol., 49, No. 1, 1–51 (1996).

    PubMed  Google Scholar 

  35. C. A. Piantadosi, J. Zhang, E. D. Levin, R. J. Folz, and D. E. Schmechel, “Apoptosis and delayed neuronal damage after carbon monoxide poisoning in the rat,” Exptl. Neurol., 147, No. 1, 103–114 (1997).

    Article  Google Scholar 

  36. J. Saez-Valero, G. Sberna, C. A. Mclean, and D. H. Small, “Molecular isoform distribution and glycosylation of acetylcholinesterase are altered in brain and cerebrospinal fluid of patients with Alzheimer's disease,” J. Neurochem., 72, 1600–1608 (1999).

    Article  PubMed  Google Scholar 

  37. M. Schwab, R. Schaller, R. Bauer, and U. Zwiener, “Morphofunctional effects of moderate forebrain ischemia combined with short-term hypoxia in rats-protective effects of Cerebrolysin,” Exptl. Toxicol. Pathol., 49, No. 1-2, 29–37 (1997).

    Google Scholar 

  38. K. V. Sharma, C. Koenigsberger, S. Brimijoin, and J. W. Bigbee, “Direct evidence for an adhesive function in the noncholinergic role of acetylcholinesterase in neurite outgrowth,” J. Neurosci. Res., 63, 165–175 (2001).

    Article  PubMed  Google Scholar 

  39. H. Soreq and S. Seidman, “Acetylcholinesterase-new roles for an old actor,” Nature Rev. Neurosci., 2, 294–302 (2001).

    Article  Google Scholar 

  40. F. Thullier, R. Lalonde, X. Cousin, and F. Lestienne, “Neurobehavioral evaluation of lurcher mutant mice during ontogeny,” Dev. Brain Res., 100, 22–28 (1997).

    Article  Google Scholar 

  41. D. Trotti, N. C. Danbolt, and A. Volterra, “Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration?” Trends Pharmacol. Sci., 19, 328–334 (1998).

    Article  PubMed  Google Scholar 

  42. S. P. Wise and P. J. Donoghue, “Motor cortex of rodent,” in: Sensory-Motor Areas and Aspects of Cortical Connectivity, E. G. Jones, and A. Pteres (eds.), Plenum Press, London (1986), pp. 243–270.

    Google Scholar 

  43. I. A. Zhuravin, N. M. Dubrovskaya, and S. A. Plesneva, “Striatal level of regulation of learned forepaw movements in rats,” Physiol. Res., 51, Suppl. 1, S67–S76 (2002).

    PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuravin, I.A., Dubrovskaya, N.M. & Tumanova, N.L. Postnatal Physiological Development of Rats after Acute Prenatal Hypoxia. Neurosci Behav Physiol 34, 809–816 (2004). https://doi.org/10.1023/B:NEAB.0000038132.08219.31

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEAB.0000038132.08219.31

Navigation