Skip to main content
Log in

Modulation of flavonoid metabolism in Arabidopsis using a phage-derived antibody

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The utility of recombinant antibodies for immunomodulation of plant metabolism was tested using the Arabidopsis flavonoid biosynthetic pathway as a target. Two genes encoding antibodies against chalcone isomerase (CHI) were isolated from a human synthetic single chain variable fragment (scFv) library and expressed in the cytoplasm of transgenic plants. In one line, low-level expression of the scFv resulted in reduced visible pigmentation in seedlings as well as lower accumulation of phenolics in plants throughout development. Surprisingly, other transgenic lines with much higher expression of the same antibody showed no phenotype. Protein mobility shift assays indicated that the scFv is bound to the target enzyme, but only in the affected plants. This work shows that recombinant scFv antibody technology offers a viable approach to disrupting protein activity in plants, but that further refinement is required before it will be of general utility for metabolic engineering and other antibody-based applications in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bechtold N., Ellis J. and Pelletier G. 1993. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad. Sci. Paris Life Sci. 316: 1194–1199.

    Google Scholar 

  • Bruyns A.-M., De Jaeger G., De Neve M., De Wilde C., Van Montagu M. and Depicker A. 1996. Bacterial and plant-produced scFv proteins have similar antigen-binding properties. FEBS Lett. 386: 5–10.

    Google Scholar 

  • Burbulis I.E., Iacobucci M. and Shirley B.W. 1996. A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell 8: 1013–1025.

    Google Scholar 

  • Cain C.C., Saslowsky D.E., Walker R.A. and Shirley B.W. 1997. Expression of chalcone synthase and chalcone isomerase proteins in Arabidopsis seedlings. Plant Mol. Biol. 35: 377–381.

    Google Scholar 

  • Chen H., Nelson R.S. and Sherwood J.L. 1994. Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16: 664–668, 670.

    Google Scholar 

  • De Jaeger G. et al. 1999. High level accumulation of single-chain variable fragments in the cytosol of transgenic Petunia hybrida. Eur. J. Biochem. 259: 426–434.

    Google Scholar 

  • De Jaeger G., De Wilde C., Eeckhout D., Fiers E. and Depicker A. 2000. The plantibody approach: expression of antibody genes in plants to modulate plant metabolism or to obtain pathogen resistance. Plant Mol. Biol. 43: 419–428.

    Google Scholar 

  • Eeckhout D., Fiers E., Sienaert R., Snoeck V., Depicker A. and De Jaeger G. 2000. Isolation and characterization of recombinant antibody fragements against CDC2a from Arabidopsis thaliana. Eur. J. Biochem. 267: 6775–6783.

    Google Scholar 

  • Graham T.L. 1998. Flavonoid and flavonol glycoside metabolism in Arabidopsis. Plant Physiol. Biochem. 36: 135–144.

    Google Scholar 

  • Harrison J.L., Williams S.C., Winter G. and Nissim A. 1996. Screening of phage antibody libraries. Methods Enzymol. 267: 83–109.

    Google Scholar 

  • Hiatt A., Cafferkey R. and Bowdish K. 1989. Production of anti-bodies in transgenic plants. Nature 342: 76–78.

    Google Scholar 

  • Hoogenboom H.R., de Bruïne A.P., Hufton S.E., Hoet R.M., Arends J.-W. and Roovers R.C. 1998. Antibody phage display technology and its applications. Immunotechnol. 4: 1–20.

    Google Scholar 

  • Hoogenboom H.R. and Winter G. 1992. By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J. Mol. Biol. 227: 381–388.

    Google Scholar 

  • Hudson P.J. and Kortt A.A. 1999. High avidity scFv multimers; diabodies and triabodies. J. Immunol. Meth. 231: 177–189.

    Google Scholar 

  • Kubasek W.L., Shirley B.W., McKillop A., Goodman H.M., Briggs W. and Ausubel F.M. 1992. Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. Plant Cell 4: 1229–1236.

    Google Scholar 

  • Lener M. et al. 2000. Diverting a protein from its cellular location by intracellular antibodies. The case of p21 Ras. Eur. J. Biochem. 267: 1196–1205.

    Google Scholar 

  • Li J., Ou-Lee T.-M., Raba R., Amundson R.G. and Last R.L. 1993. Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5: 171–179.

    Google Scholar 

  • Lloyd A.M., Walbot V. and Davis R.W. 1992. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258: 1773–1775.

    Google Scholar 

  • Marks J.D., Hoogenboom H.R., Bonnert T.P., McCafferty J., Griffiths A.D. and Winter G. 1991. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222: 581–597.

    Google Scholar 

  • Matzke M.A., Mette M.F., Aufsatz W., Jakowitsch J., Matzke A.J. 1999. Host defenses to parasitic sequences and the evolution of epigenetic control mechanisms. Genetica 107: 271–287.

    Google Scholar 

  • Maynard J. and Georgiou G 2000. Antibody engineering. Annu. Rev. Biomed. Eng. 2: 339–376.

    Google Scholar 

  • Mol J., Grotewold E., Koes R 1998. How genes paint flowers and seeds. Trends Plant Sci. 3: 212–217.

    Google Scholar 

  • Moustafa E. and Wong E. 1967. Purification and properties of chalcone-flavanone isomerase from soya bean seed. Phytochem. 6: 625–632.

    Google Scholar 

  • Nesi N., Jond C., Debeaujon I., Caboche M. and Lepiniec L. 2001. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for accumulation in developing seed. Plant Cell 13: 2099–2114.

    Google Scholar 

  • Nissim A. et al. 1994. Antibody fragments from a 'single pot’ ph-age display library as immunochemical reagents. EMBO J. 13: 692–698.

    Google Scholar 

  • Owen M., Gandecha A., Cockburn B. and Whitelam G. 1992. Synthesis of a functional antiphytochrome single-chain Fv protein in transgenic tobacco. Bio/technology 10: 790–794.

    Google Scholar 

  • Pelletier M.K., Burbulis I.E. and Shirley B.W. 1999. Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and endproducts in Arabidopsis seedlings. Plant Mol. Biol. 40: 45–54.

    Google Scholar 

  • Rajpal A. and Turi T.G. 2001. Intracellular stability of anti-caspase-3 intrabodies determines efficacy in re-targeting antigen. J. Biol. Chem. 2001: 33139–33146.

    Google Scholar 

  • Ramírez N. et al. 2002. Expression of a single-chain Fv antibody fragment specific for the Hepatitis B surface antigen in transgenic tobacco plants. Transgenic Res. 11: 61–64.

    Google Scholar 

  • Restrepo M.A., Freed D.D. and Carrington J.C. 1990. Nuclear transport of plant potyviral proteins. Plant Cell 2: 987–998.

    Google Scholar 

  • Roggero P., Ciuffo M., Benvenuto E. and Franconi R. 2001. The expression of a single-chain scFv antibody fragment in different plant hosts and tissues by using Potato Virus X as a vector. Protein Expres. Purif. 22: 70–74.

    Google Scholar 

  • Saslowsky D. and Winkel-Shirley B 2001. Localization of flavonoid enzymes in Arabidopsis roots. Plant J. 27: 37–48.

    Google Scholar 

  • Saslowsky D.E., Dana C.D., Winkel-Shirley B. 2000. An allelic series for the chalcone synthase locus in Arabidopsis. Gene 255: 127–138.

    Google Scholar 

  • Schillberg S., Zimmermann S., Voss A. and Fischer R. 1999. Apoplastic and cytosolic expression of full-size antibodies and anti-body fragments in Nicotiana tabacum. Transgenic Res. 8: 255–263.

    Google Scholar 

  • Schouten A., Roosien J., bakker J. and Schots A. 2002. Formation of disulfide bridges by a single-chain Fv antibody in the reducing ectopic environment of the plant cytosol. J. Biol. Chem. 277: 19339–19345.

    Google Scholar 

  • Shirley B.W. et al. 1995. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J. 8: 659–671.

    Google Scholar 

  • Tavladoraki P., Benvenuto E., Trinca S., De Martinis D., Cattaneo A. and Galeffi P. 1993. Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366: 469–472.

    Google Scholar 

  • Veit M. and Pauli G.F. 1999. Major flavonoids from Arabidopsis thaliana leaves. J. Nat. Prod. 62: 1301–1303.

    Google Scholar 

  • Wang W., Zhou J., Xu L. and Zhen Y. 2000. Antineoplastic effect of intracellular expression of a single-chain antibody directed against type IV collagenase. J. Environ. Pathol. Toxicol. Oncol. 19: 61–68.

    Google Scholar 

  • Wigger J. et al. 2002. Prevention of stomatal closure by immuno-modulation of endogenous abscisic acid and its reversion by abscisic acid treatment: physiological behaviour and morphological features of tobacco stomata. Planta 215: 413–423.

    Google Scholar 

  • Winkel-Shirley B. 2001. Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol. 126: 485–493.

    Google Scholar 

  • Winkel-Shirley B. 2002. A mutational approach to dissection of flavonoid biosynthesis in Arabidopsis.. In: Romeo J.T. and Dixon R.A. (eds), Phytochemistry in the Genomics and Post-Genomics Eras. Elsevier Science Ltd., Oxford, UK, pp. 95–110.

    Google Scholar 

  • Xiao X.W. et al. 2000. Antibody-mediated improved resistance to ClYVV and PVY infections in transgenic tobacco plants expressing a single-chain variable region antibody. Mol. Breed. 6: 421–431.

    Google Scholar 

  • Yuan Q., Hu W., Pestka J.J., He S.Y. and Hart L.P. 2000. Expression of a functional antizearalenone single-chain Fv antibody in transgenic Arabidopsis plants. Appl. Environ. Microbiol. 66: 3499–3505.

    Google Scholar 

  • Zhang M.-Y., Schillberg S., Zimmermann S., Liao Y.-C., Breuer G. and Fischer R 2001. GST fusion proteins cause false positive during selection of viral movement protein specific single chain antibodies. J. Virol. Meth. 91: 139–147.

    Google Scholar 

  • Zhu Q. et al. 1999. Extended half-life and elevated steady-state level of a single-chain Fv intrabody are critical for specific in-tracellular retargeting of its antigen, caspase-7. J. Immunol. Methods 231: 207–222.

    Google Scholar 

  • Zimmerman S., Schillberg S., Liao Y.-C. and Fisher R. 1998. Intracellular expression of TMV-specific single-chain Fv fragments leads to improved virus resistance in Nicotiana tabacum. Mol. Breed. 4: 369–379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, M.O., Crosby, W.L. & Winkel, B.S. Modulation of flavonoid metabolism in Arabidopsis using a phage-derived antibody. Molecular Breeding 13, 333–343 (2004). https://doi.org/10.1023/B:MOLB.0000034088.64105.13

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MOLB.0000034088.64105.13

Navigation