Skip to main content
Log in

Erythropoietin: Novel Approaches to Neuroprotection in Human Brain Disease

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

With the increased life expectancy in western industrialized countries, the incidence and prevalence of brain diseases dramatically increased. Stroke and a wide spectrum of neuropsychiatric illnesses such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, traumatic head injury, and schizophrenia all lead to severe disability. However, targeted effective therapies for treatment of these diseases are lacking. Even more frustrating is the fact that we do not yet clearly understand the basic mechanisms underlying the disease processes in these conditions. We propose a hypothesis of loss of neuronal function via a final common deleterious pathway in this clinically very heterogeneous disease group. This review presents a novel neuroprotective concept for treatment of brain disease: Erythropoietin (EPO). EPO is a natural body-own-protein hormone that has been used for treatment of anemia for more than a decade. The neuroprotective approach using EPO in brain disease represents a totally new frontier. The “Göttingen EPO-stroke trial” represents the first effective use in man of a neuroprotective therapy in an acute brain disease while the experimental EPO therapy to combat cognitive decline in patients with schizophrenia will be introduced as an example of a neuroprotective strategy for a chronic brain disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Agnello, D., Bigini, P., Villa, P., Mennini, T., Cerami, A., Brines, M.L., and Ghezzi, P. (2002). Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Res. 952:128–134.

    PubMed  Google Scholar 

  • Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., and Lindvall, O. (2002). Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8:963–970.

    PubMed  Google Scholar 

  • Aydin, A., Genc, K., Akhisaroglu, M., Yorukoglu, K., Gokmen, N., and Gonullu, E. (2003). Erythropoietin exerts neuroprotective effect in neonatal rat model of hypoxic-ischemic brain injury. Brain Dev. 25:494–498.

    PubMed  Google Scholar 

  • Bernaudin, M., Marti, H.H., Roussel, S., Divoux, D., Nouvelot, A., MacKenzie, E.T., and Petit, E. (1999). A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J. Cereb Blood Flow Metab. 19:643–651.

    PubMed  Google Scholar 

  • Bernaudin, M., Nedelec, A.S., Divoux, D., MacKenzie, E.T., Petit, E., and Schumann-Bard, P. (2002). Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J. Cereb Blood Flow Metab. 22:393–403.

    PubMed  Google Scholar 

  • Bohlius, J., Langensiepen, S., Schwarzer, G., and Engert, A. (2002). Epoetin in the treatment of malignant disease: A comprehensive meta-analysis. Blood 100:3430A.

    Google Scholar 

  • Brines, M.L., Ghezzi, P., Keenan, S., Agnello, D., de Lanerolle, N.C., Cerami, C., Itri, L.M., and Cerami, A. (2000). Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc. Natl. Acad. Sci. U.S.A 97:10526–10531.

    PubMed  Google Scholar 

  • Cai, Z., Manalo, D.J., Wei, G., Rodriguez, E.R., Fox-Talbot, K., Lu, H., Zweier, J.L., and Semenza, G.L. (2003). Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation 108:79–85.

    PubMed  Google Scholar 

  • Calvillo, L., Latini, R., Kajstura, J., Leri, A., Anversa, P., Ghezzi, P., Salio, M., Cerami, A., and Brines, M. (2003). Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc. Natl. Acad. Sci U.S.A 100:4802–4806.

    PubMed  Google Scholar 

  • Campana, W.M., and Myers, R.R. (2001). Erythropoietin and erythropoietin receptors in the peripheral nervous system: Changes after nerve injury. Faseb J. 15:1804–1806.

    PubMed  Google Scholar 

  • Carlsson, A. (1988). The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1:179–186.

    PubMed  Google Scholar 

  • Celik, M., Gokmen, N., Erbayraktar, S., Akhisaroglu, M., Konakc, S., Ulukus, C., Genc, S., Genc, K., Sagiroglu, E., Cerami, A., and Brines, M. (2002). Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc. Natl. Acad. Sci. U.S.A 99:2258–2263.

    PubMed  Google Scholar 

  • Chattopadhyay, A., Choudhury, T.D., Bandyopadhyay, D., and Datta, A.G. (2000). Protective effect of erythropoietin on the oxidative damage of erythrocyte membrane by hydroxyl radical. Biochem. Pharmacol. 59:419–425.

    PubMed  Google Scholar 

  • Chong, Z.Z., Lin, S.H., Kang, J.Q., and Maiese, K. (2003). Erythropoietin prevents early and late neuronal demise through modulation of Akt1 and induction of caspase 1, 3, and 8. J. Neurosci. Res. 71:659–669.

    PubMed  Google Scholar 

  • De Keyser, J., Sulter, G., and Luiten, P.G. (1999). Clinical trials with neuroprotective drugs in acute ischaemic stroke: Are we doing the right thing? Trends Neurosci. 22:535–540.

    PubMed  Google Scholar 

  • Digicaylioglu, M., and Lipton, S.A. (2001). Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature 412:641–647.

    PubMed  Google Scholar 

  • Ehrenreich, H., Degner, D., Meller, J., Brines, M., Behe, M., Hasselblatt, M., Woldt, H., Falkai, P., Knerlich, F., Jacob, S., von Ahsen, N., Maier, W., Brück, W., Rüther, E., Cerami, A., Becker, W., and Sirén, A.-L. (2004). Erythropoietin: A candidate compound for neuroprotection in schizophrenia. Mol. Psychiat. 9:42–54.

    Google Scholar 

  • Ehrenreich, H., Hasselblatt, M., Dembowski, C., Cepek, L., Lewczuk, P., Stiefel, M., Rustenbeck, H.-H., Breiter, N., Jacob, S., Knerlich, F., Bohn, M., Poser, W., Rüther, E., Kochen, M., Gefeller, O., Gleiter, C., Wessel, T.C., De Ryck, M., Itri, L., Prange, H., Cerami, A., Brines, M., and Sirén, A.-L. (2002). Erythropoietin therapy for acute stroke is both safe and beneficial. Mol. Med. 8:495–505.

    PubMed  Google Scholar 

  • Ehrenreich, H., and Sirén, A.-L. (2001). Special issue-editorial: Neuroprotection—what does it mean?—What means do we have? Eur. Arch. Psychiatry Clin. Neurosci. 251:149–151.

    PubMed  Google Scholar 

  • Erbayraktar, S., Grasso, G., Sfacteria, A., Xie, Q.W., Coleman, T., Kreilgaard, M., Torup, L., Sager, T., Erbayraktar, Z., Gokmen, N., Yilmaz, O., Ghezzi, P., Villa, P., Fratelli, M., Casagrande, S., Leist, M., Helboe, L., Gerwein, J., Christensen, S., Geist, M.A., Pedersen, L.O., Cerami-Hand, C., Wuerth, J.P., Cerami, A., and Brines, M. (2003). Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc. Natl. Acad. Sci. U.S.A 100:6741–6746.

    PubMed  Google Scholar 

  • Eriksson, P.S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A.M., Nordborg, C., Peterson, D.A., and Gage, F.H. (1998). Neurogenesis in the adult human hippocampus. Nat. Med. 4:1313–1317.

    PubMed  Google Scholar 

  • Genc, S., Akhisaroglu, M., Kuralay, F., and Genc, K. (2002). Erythropoietin restores glutathione peroxidase activity in 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine-induced neurotoxicity in C57BL mice and stimulates murine astroglial glutathione peroxidase production in vitro. Neurosci. Lett. 321:73–76.

    PubMed  Google Scholar 

  • Genc, S., Kuralay, F., Genc, K., Akhisaroglu, M., Fadiloglu, S., Yorukoglu, K., Fadiloglu, M., and Gure, A. (2001). Erythropoietin exerts neuroprotection in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated C57/BL mice via increasing nitric oxide production. Neurosci. Lett. 298:139–141.

    PubMed  Google Scholar 

  • Grimm, C., Wenzel, A., Groszer, M., Mayser, H., Seeliger, M., Samardzija, M., Bauer, C., Gassmann, M., and Reme, C.E. (2002). HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat. Med. 8:718–724.

    PubMed  Google Scholar 

  • Hacke, W., Kaste, M., Fieschi, C., von Kummer, R., Davalos, A., Meier, D., Larrue, V., Bluhmki, E., Davis, S., Donnan, G., Schneider, D., Diez-Tejedor, E., and Trouillas, P. (1998). Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet 352:1245–1251.

    PubMed  Google Scholar 

  • Haefner, H. (2000). Epidemiology of schizophrenia. A thriving discipline at the turn of the century. Eur. Arch. Psychiatry Clin. Neurosci. 250:271–273.

    PubMed  Google Scholar 

  • Herrmann, M., and Ehrenreich, H. (2003). Brain derived proteins as markers of acute stroke: Their relation to pathophysiology, outcome prediction and neuroprotective drug monitoring. Restor. Neurol. Neurosci. 21:177–190.

    PubMed  Google Scholar 

  • Jelkmann, W. (2000). Use of recombinant human erythropoietin as an antianemic and performance enhancing drug. Curr. Pharm. Biotechnol. 1:11–31.

    PubMed  Google Scholar 

  • Junk, A.K., Mammis, A., Savitz, S.I., Singh, M., Roth, S., Malhotra, S., Rosenbaum, P.S., Cerami, A., Brines, M., and Rosenbaum, D.M. (2002). Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury. Proc. Natl. Acad. Sci. U.S.A. 99:10659–10664.

    PubMed  Google Scholar 

  • Kawakami, M., Sekiguchi, M., Sato, K., Kozaki, S., and Takahashi, M. (2001). Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia. J. Biol. Chem. 276:39469–39475.

    PubMed  Google Scholar 

  • Kilts, C.D. (2001). The changing roles and targets for animal models of schizophrenia. Biol. Psychiatry 50:845–855.

    PubMed  Google Scholar 

  • Knabe, W., Knerlich, F., Washausen, S., Keitymann, T., Sirén, A.-L., Brunnett, G., Kuhn, H.-J., and Ehrenreich, H. (2004). Expression patterns of erythropoietin and its receptor in the developing midbrain. Anat. Embryol. (Berl). 207:503–512.

    Google Scholar 

  • Koshimura, K., Murakami, Y., Sohmiya, M., Tanaka, J., and Kato, Y. (1999). Effects of erythropoietin on neuronal activity. J. Neurochem. 72:2565–2572.

    PubMed  Google Scholar 

  • Kraepelin, E. (1919). Dementia praecox and Paraphrenia, E & S Livingstone, Edinburgh.

    Google Scholar 

  • Kremen, W.S., Seidman, L.J., Faraone, S.V., and Tsuang, M.T. (2001). Intelligence quotient and neuropsychological profiles in patients with schizophrenia and in normal volunteers. Biol. Psychiatry 50:453–462.

    PubMed  Google Scholar 

  • Kuhn, H.G., Palmer, T.D., and Fuchs, E. (2001). Adult neurogenesis: A compensatory mechanism for neuronal damage. Eur. Arch. Psychiatry Clin Neurosci. 251:152–158.

    PubMed  Google Scholar 

  • Lewczuk, P., Hasselblatt, M., Kamrowski-Kruck, H., Heyer, A., Unzicker, C., Sirén, A.L., and Ehrenreich, H. (2000). Survival of hippocampal neurons in culture upon hypoxia: Effect of erythropoietin. Neuroreport 11:3485–3488.

    PubMed  Google Scholar 

  • Lewis, D.A., and Levitt, P. (2002). Schizophrenia as a disorder of neurodevelopment. Annu Rev. Neurosci. 25:409–432.

    PubMed  Google Scholar 

  • Lieberman, J.A. (1999). Is schizophrenia a neurodegenerative disorder? Aclinical and neurobiological perspective. Biol. Psychiatry 46:729–739.

    PubMed  Google Scholar 

  • Lipska, B.K., and Weinberger, D.R. (2000). To model a psychiatric disorder in animals: Schizophrenia as a reality test. Neuropsychopharmacology 23:223–239.

    PubMed  Google Scholar 

  • Magavi, S.S., Leavitt, B.R., and Macklis, J.D. (2000). Induction of neurogenesis in the neocortex of adult mice. Nature 405:951–955.

    Google Scholar 

  • Malaspina, D., Goetz, R.R., Friedman, J.H., Kaufmann, C.A., Faraone, S.V., Tsuang, M., Cloninger, C.R., Nurnberger, J.I., Jr., and Blehar, M.C. (2001). Traumatic brain injury and schizophrenia in members of schizophrenia and bipolar disorder pedigrees. Am.J.Psychiatry 158:440–446.

    PubMed  Google Scholar 

  • Marenco, S., and Weinberger, D.R. (2000). The neurodevelopmental hypothesis of schizophrenia: Following a trail of evidence from cradle to grave. Dev. Psychopathol. 12:501–527.

    PubMed  Google Scholar 

  • Marti, H.H., Wenger, R.H., Rivas, L.A., Straumann, U., Digicaylioglu, M., Henn, V., Yonekawa, Y., Bauer, C., and Gassmann, M. (1996). Erythropoietin gene expression in human, monkey and murine brain. Eur. J. Neurosci. 8:666–676.

    PubMed  Google Scholar 

  • Masuda, S., Nagao, M., Takahata, K., Konishi, Y., Gallyas, F., Jr., Tabira, T., and Sasaki, R. (1993). Functional erythropoietin receptor of the cells with neural characteristics. Comparison with receptor properties of erythroid cells. J. Biol. Chem. 268:11208–11216.

    PubMed  Google Scholar 

  • McGlashan, T.H., and Hoffman, R.E. (2000). Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch. Gen. Psychiatry 57:637–648.

    PubMed  Google Scholar 

  • Mielke, R., Moller, H.J., Erkinjuntti, T., Rosenkranz, B., Rother, M., and Kittner, B. (1998). Propentofylline in the treatment of vascular dementia and Alzheimer-type dementia: Overview of phase I and phase II clinical trials. Alzheimer Dis. Assoc. Disord. 12(Suppl. 2):S29–S35.

    Google Scholar 

  • Morishita, E., Masuda, S., Nagao, M., Yasuda, Y., and Sasaki, R. (1997). Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 76:105–116.

    PubMed  Google Scholar 

  • Nakano, T., Kodama, H., and Honjo, T. (1996). In vitro development of primitive and definitive erythrocytes from different precursors. Science 272:722–724.

    PubMed  Google Scholar 

  • Parsa, C.J., Matsumoto, A., Kim, J., Riel, R.U., Pascal, L.S., Walton, G.B., Thompson, R.B., Petrofski, J.A., Annex, B.H., Stamler, J.S., and Koch, W.J. (2003). A novel protective effect of erythropoietin in the infarcted heart. J. Clin. Invest. 112:999–1007.

    PubMed  Google Scholar 

  • Prass, K., Scharff, A., Ruscher, K., Lowl, D., Muselmann, C., Victorov, I., Kapinya, K., Dirnagl, U., and Meisel, A. (2003). Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke 34:1981–1986.

    PubMed  Google Scholar 

  • Ruscher, K., Freyer, D., Karsch, M., Isaev, N., Megow, D., Sawitzki, B., Priller, J., Dirnagl, U., and Meisel, A. (2002). Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: Evidence from an in vitro model. J. Neurosci. 22:10291–10301.

    PubMed  Google Scholar 

  • Sakanaka, M., Wen, T.C., Matsuda, S., Masuda, S., Morishita, E., Nagao, M., and Sasaki, R. (1998). In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc. Natl. Acad. Sci. U.S.A 95:4635–4640.

    PubMed  Google Scholar 

  • Sasaki, R., Masuda, S., and Nagao, M. (2001). Pleiotropic functions and tissue-specific expression of erythropoietin. News Physiol. Sci. 16:110–113.

    PubMed  Google Scholar 

  • Shingo, T., Sorokan, S.T., Shimazaki, T., and Weiss, S. (2001). Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J. Neurosci. 21:9733–9743.

    PubMed  Google Scholar 

  • Sirén, A.-L., and Ehrenreich, H. (2001). Erythropoietin—a novel concept of neuroprotection. Eur. Arch. Psychiatry Clin. Neurosci. 251:179–184.

    PubMed  Google Scholar 

  • Sirén, A.L., Fratelli, M., Brines, M., Goemans, C., Casagrande, S., Lewczuk, P., Keenan, S., Gleiter, C., Pasquali, C., Capobianco, A., Mennini, T., Heumann, R., Cerami, A., Ehrenreich, H., and Ghezzi, P. (2001b). Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc. Natl. Acad. Sci U.S.A. 98:4044–4049.

    PubMed  Google Scholar 

  • Sirén, A.-L., Knerlich, F., Poser, W., Gleiter, C., Brück, W., and Ehrenreich, H. (2001a). Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain. Acta Neuropathol. 101:271–276.

    PubMed  Google Scholar 

  • Stuckmann, I., Evans, S., and Lassar, A.B. (2003). Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation. Dev. Biol. 255:334–349.

    PubMed  Google Scholar 

  • Thompson, P.M., Vidal, C., Giedd, J.N., Gochman, P., Blumenthal, J., Nicolson, R., Toga, A.W., and Rapoport, J.L. (2001). From the Cover: Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc. Natl. Acad. Sci. U.S.A. 98:11650–11655.

    PubMed  Google Scholar 

  • Tramontano, A.F., Muniyappa, R., Black, A.D., Blendea, M.C., Cohen, I., Deng, L., Sowers, J.R., Cutaia, M.V., and El-Sherif, N. (2003). Erythropoietin protects cardiac myocytes from hypoxia-induced apoptosis through an Akt-dependent pathway. Biochem. Biophys. Res. Commun. 308:990–994.

    PubMed  Google Scholar 

  • van Praag, H., Schinder, A.F., Christie, B.R., Toni, N., Palmer, T.D., and Gage, F.H. (2002). Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034.

    Google Scholar 

  • Villa, P., Bigini, P., Mennini, T., Agnello, D., Laragione, T., Cagnotto, A., Viviani, B., Marinovich, M., Cerami, A., Coleman, T.R., Brines, M., and Ghezzi, P. (2003). Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J. Exp. Med. 198:971–975.

    PubMed  Google Scholar 

  • Wu, H., Lee, S.H., Gao, J., Liu, X., and Iruela-Arispe, M.L. (1999). Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 126:3597–3605.

    PubMed  Google Scholar 

  • Yu, X., Shacka, J.J., Eells, J.B., Suarez-Quian, C., Przygodzki, R.M., Beleslin-Cokic, B., Lin, C.S., Nikodem, V.M., Hempstead, B., Flanders, K.C., Costantini, F., and Noguchi, C.T. (2002). Erythropoietin receptor signalling is required for normal brain development. Development 129:505–516.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrenreich, H., Aust, C., Krampe, H. et al. Erythropoietin: Novel Approaches to Neuroprotection in Human Brain Disease. Metab Brain Dis 19, 195–206 (2004). https://doi.org/10.1023/B:MEBR.0000043969.96895.3c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MEBR.0000043969.96895.3c

Navigation