Skip to main content
Log in

Telomere Shortening Occurs Early During Breast Tumorigenesis: A Cause of Chromosome Destabilization Underlying Malignant Transformation?

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Chromosomal instability appears early during breast carcinogenesis and is considered a major driving force in malignant transformation. While current evidence suggests that centrosomal and mitotic checkpoint defects may, in large part, account for numerical chromosomal abnormalities, the mechanisms underlying structural chromosomal abnormalities remain largely unknown. Telomeres stabilize and protect chromosomal termini, but shorten due to cell division and oxidative damage. Moderate telomere shortening signals a tumor suppressive growth arrest in normal cells. Critically short telomeres, in the setting of abrogated DNA damage checkpoints, cause chromosomal instability due to end-to-end chromosomal fusions, subsequent breakage, and rearrangement, resulting in an increased cancer incidence in animal models. Recent results from high resolution in situ telomere length assessment in human breast tissues indicate that significant telomere shortening is prevalent in preinvasive breast lesions (DCIS), as well as focal areas of histologically normal epithelium from which breast carcinoma is thought to arise. Telomere shortening is therefore a strong candidate for the cause of structural chromosome defects that contribute to breast cancer development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. R. Fearon and B. Vogelstein (1990). A genetic model for colorectal tumorigenesis. Cell 61(5):759-767.

    Google Scholar 

  2. C. D. Heinen, C. Schmutte, and R. Fishel (2002). DNA repair and tumorigenesis: Lessons from hereditary cancer syndromes. Cancer Biol. Ther. 1(5):477-485.

    Google Scholar 

  3. P. L. Welcsh and M. C. King (2001). BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum. Mol. Genet. 10(7):705-713.

    Google Scholar 

  4. K. L. Nathanson and B. L. Weber (2001). “Other” breast cancer susceptibility genes: Searching for more holy grail. Hum. Mol. Genet. 10(7):715-720.

    Google Scholar 

  5. C. Lengauer, K. W. Kinzler, and B. Vogelstein (1998). Genetic instabilities in human cancers. Nature 396(6712):643-649.

    Google Scholar 

  6. C. Adem, C. L. Soderberg, J. M. Cunningham, C. Reynolds, T. J. Sebo, S. N. Thibodeau, et al.(2003). Microsatellite instability in hereditary and sporadic breast cancers. Int. J. Cancer 107(4):580-582.

    Google Scholar 

  7. B. L. King, S. C. Tsai, M. E. Gryga, T. G. D'Aquila, S. A. Seelig, L. E. Morrison, et al.(2003). Detection of chromosomal instability in paired breast surgery and ductal lavage specimens by interphase fluorescence in situ hybridization. Clin. Cancer Res. 9(4):1509-1516.

    Google Scholar 

  8. D. S. Yoon, R. P. Wersto, W. Zhou, F. J. Chrest, E. S. Garrett, T. K. Kwon, et al.(2002). Variable levels of chromosomal instability and mitotic spindle checkpoint defects in breast cancer. Am. J. Pathol. 161(2):391-397.

    Google Scholar 

  9. J. L. Salisbury (2001). The contribution of epigenetic changes to abnormal centrosomes and genomic instability in breast cancer. J. Mammary Gland Biol. Neoplasia 6(2):203-212.

    Google Scholar 

  10. P. O'Connell (2003). Genetic and cytogenetic analyses of breast cancer yield different perspectives of a complex disease. Breast Cancer Res. Treat. 78(3):347-357.

    Google Scholar 

  11. B. J. Miller, D. Wang, R. Krahe, and F. A. Wright (2003). Pooled analysis of loss of heterozygosity in breast cancer: A genome scan provides comparative evidence for multiple tumor suppressors and identifies novel candidate regions. Am. J. Hum. Genet. 73(4):748-767.

    Google Scholar 

  12. M. R. Teixeira, N. Pandis, and S. Heim (2002). Cytogenetic clues to breast carcinogenesis. Genes Chromosomes Cancer 33(1):1-16.

    Google Scholar 

  13. F. M. Waldman, S. DeVries, K. L. Chew, D. H. Moore, 2nd, K. Kerlikowske, and B. M. Ljung (2000). Chromosomal alterations in ductal carcinomas in situ and their in situ recurrences. J. Natl. Cancer Inst. 92(4):313-320.

    Google Scholar 

  14. E. Moore, H. Magee, J. Coyne, T. Gorey, and P. A. Dervan (1999). Widespread chromosomal abnormalities in high-grade ductal carcinoma in situ of the breast. Comparative genomic hybridization study of pure high-grade DCIS. J. Pathol. 187(4):403-409.

    Google Scholar 

  15. H. Buerger, F. Otterbach, R. Simon, C. Poremba, R. Diallo, T. Decker, et al.(1999). Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. J. Pathol. 187(4):396-402.

    Google Scholar 

  16. M. Ciullo, M. A. Debily, L. Rozier, M. Autiero, A. Billault, V. Mayau, et al.(2002). Initiation of the breakage-fusion-bridge mechanism through common fragile site activation in human breast cancer cells: The model of PIP gene duplication from a break at FRA7I. Hum. Mol. Genet. 11(23):2887- 2894.

    Google Scholar 

  17. J. C. Lung, J. S. Chu, J. C. Yu, C. T. Yue, Y. L. Lo, C. Y. Shen, et al.(2002). Aberrant expression of cell-cycle regulator cyclin D1 in breast cancer is related to chromosomal genomic instability. Genes Chromosomes Cancer 34(3):276-284.

    Google Scholar 

  18. J. A. O'shaughnessy, G. J. Kelloff, G. B. Gordon, A. J. Dannenberg, W. K. Hong, C. J. Fabian, et al.(2002). Treatment and prevention of intraepithelial neoplasia: An important target for accelerated new agent development. Clin. Cancer Res. 8(2):314-346.

    Google Scholar 

  19. E. H. Blackburn (1991). Structure and function of telomeres. Nature 350:569-572.

    Google Scholar 

  20. T. von Zglinicki (2002). Oxidative stress shortens telomeres. Trends Biochem. Sci. 27(7):339-344.

    Google Scholar 

  21. C. W. Greider and E. H. Blackburn (1985). Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405-413.

    Google Scholar 

  22. R. R. Reddel (2003). Alternative lengthening of telomeres, telomerase, and cancer. Cancer Lett. 194(2):155-162.

    Google Scholar 

  23. C. Counter, A. Avilion, C. LeFeuvre, N. Stewart, C. Greider, C. Harley, et al.(1992). Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11:1921-1929.

    Google Scholar 

  24. B. McClintock (1941). The stability of broken ends of chromosomes in Zea mays. Genetics 26:234-282.

    Google Scholar 

  25. M. A. Blasco (2002). Telomerase beyond telomeres. Nat. Rev. Cancer 2(8):627-633.

    Google Scholar 

  26. S. E. Artandi and R. A. DePinho (2000). A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr. Opin. Genet. Dev. 10(1):39-46.

    Google Scholar 

  27. D. M. Feldser, J. A. Hackett, and C. W. Greider (2003). Telomere dysfunction and the initiation of genome instability. Nat. Rev. Cancer 3(8):623-627.

    Google Scholar 

  28. M. A. Blasco, H. W. Lee, M. P. Hande, E. Samper, P. M. Lansdorp, R. A. DePinho, et al.(1997). Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91(1):25-34.

    Google Scholar 

  29. K. L. Rudolph, S. Chang, H. W. Lee, M. Blasco, G. J. Gottlieb, C. Greider, et al.(1999). Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96(5):701-712.

    Google Scholar 

  30. R. A. DePinho and K. K. Wong (2003). The age of cancer: Telomeres, checkpoints, and longevity. J. Clin. Invest. 111(7):S9-S14.

    Google Scholar 

  31. S. E. Artandi, S. Chang, S. L. Lee, S. Alson, G. J. Gottlieb, L. Chin, et al.(2000). Telomere dysfunction promotes nonre-ciprocal translocations and epithelial cancers in mice. Nature 406(6796):641-645.

    Google Scholar 

  32. R. C. OHagan, S. Chang, R. S. Maser, R. Mohan, S. E. Artandi, L. Chin, et al.(2002). Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell 2(2):149-155.

    Google Scholar 

  33. D. Broccoli, L. A. Godley, L. A. Donehower, H. E. Varmus, and T. de Lange (1996). Telomerase activation in mouse mammary tumors: Lack of detectable telomere shortening and evidence for regulation of telomerase RNA with cell proliferation. Mol. Cell Biol. 16(7):3765-3772.

    Google Scholar 

  34. S. E. Artandi, S. Alson, M. K. Tietze, N. E. Sharpless, S. Ye, R.A. Greenberg,et al.(2002). Constitutive telomerase expression promotes mammary carcinomas in aging mice. Proc. Natl. Acad. Sci. U.S.A. 99(12):8191-8196.

    Google Scholar 

  35. E. Odagiri, N. Kanada, K. Jibiki, R. Demura, E. Aikawa, and H. Demura (1994). Reduction of telomeric length and c-erbB-2 gene amplification in human breast cancer, fibroade-noma, and gynecomastia. Relationship to histologic grade and clinical parameters. Cancer 73(12):2978-2984.

    Google Scholar 

  36. P. Rogalla, C. Rohen, U. Bonk, and J. Bullerdiek (1996). Telomeric repeat fragment lengths are not correlated to histological grading in 85 breast cancers. Cancer Lett. 106(2):155-161.

    Google Scholar 

  37. K. Takubo, K. Nakamura, T. Arai, K. Nakachi, and M. Ebuchi (1998). Telomere length in breast carcinoma of the young and aged. Nippon Rinsho 56(5):1283-1286.

    Google Scholar 

  38. S.Y. Rha, K.H. Park, T.S. Kim, N.C. Yoo, W.I. Yang, J. K. Roh, et al.(1999). Changes of telomerase and telomere lengths in paired normal and cancer tissues of breast. Int. J. Oncol. 15(4):839-845.

    Google Scholar 

  39. J. K. Griffith, J. E. Bryant, C. A. Fordyce, F. D. Gilliland, N. E. Joste, and R. K. Moyzis (1999). Reduced telomere DNA content is correlated with genomic instability and metastasis in invasive human breast carcinoma. Breast Cancer Res. Treat 54(1):59-64.

    Google Scholar 

  40. N. W. Kim, M. A. Piatyszek, K. R. Prowse, C. B. Harley, M.D. West, P.L. Ho,et al.(1994). Specific association of human telomerase activity with immortal cells and cancer. Science 266(5193):2011-2015.

    Google Scholar 

  41. E. Hiyama, L. Gollahon, T. Kataoka, K. Kuroi, T. Yokoyama, A. F. Gazdar, et al.(1996). Telomerase activity in human breast tumors. J. Natl. Cancer Inst. 88(2):116-122.

    Google Scholar 

  42. G. M. Clark, C. K. Osborne, D. Levitt, F. Wu, and N. W. Kim (1997). Telomerase activity and survival of patients with node-positive breast cancer. J. Natl. Cancer Inst. 89(24):1874-1881.

    Google Scholar 

  43. A. Hoos, H. H. Hepp, S. Kaul, T. Ahlert, G. Bastert, and D. Wallwiener (1998). Telomerase activity correlates with tumor aggressiveness and reflects therapy effect in breast cancer. Int. J. Cancer 79(1):8-12.

    Google Scholar 

  44. K. Mokbel, C. N. Parris, M. Ghilchik, G. Williams, and R. F. Newbold (1999). The association between telomerase, histopathological parameters, and KI-67 expression in breast cancer. Am. J. Surg. 178(1):69-72.

    Google Scholar 

  45. K. M. Mokbel, C. N. Parris, M. Ghilchik, C. N. Amerasinghe, and R. F. Newbold (2000). Telomerase activity and lym-phovascular invasion in breast cancer. Eur. J. Surg. Oncol. 26(1):30-33.

    Google Scholar 

  46. A. Papadopoulou, T. Trangas, M. R. Teixeira, S. Heim, E. Dimitriadis, H. Tsarouha, et al.(2003). Telomerase activity and genetic alterations in primary breast carcinomas. Neoplasia 5(2):170-178.

    Google Scholar 

  47. I. Bieche, C. Nogues, V. Paradis, M. Olivi, P. Bedossa, R. Lidereau, et al.(2000). Quantitation of hTERT gene expression in sporadic breast tumors with a real-time reverse transcription-polymerase chain reaction assay. Clin. Cancer Res. 6(2):452-459.

    Google Scholar 

  48. R. L. Loveday, J. Greenman, P. J. Drew, J. R. Monson, and M. J. Kerin (1999). Genetic changes associated with telom-erase activity in breast cancer. Int. J. Cancer 84(5):516-520.

    Google Scholar 

  49. L. A. Carey, N. W. Kim, S. Goodman, J. Marks, G. Henderson, C. B. Umbricht, et al.(1999). Telomerase activity and prognosis in primary breast cancers. J. Clin. Oncol. 17(10):3075-3081.

    Google Scholar 

  50. L. A. Carey, C. A. Hedican, G. S. Henderson, C. B. Umbricht, J. S. Dome, D. Varon, et al.(1998). Careful histological confirmation and microdissection reveal telomerase activity in otherwise telomerase-negative breast cancers. Clin. Cancer Res. 4(2):435-440.

    Google Scholar 

  51. T. Sugino, K. Yoshida, J. Bolodeoku, D. Tarin, and S. Goodison (1997). Telomerase activity and its inhibition in benign and malignant breast lesions. J. Pathol. 183(1):57-61.

    Google Scholar 

  52. C. Poremba, K. R. Shroyer, M. Frost, R. Diallo, F. Fogt, K. L. Schafer, et al.(1999). Telomerase is a highly sensitive and specific molecular marker in fine-needle aspirates of breast lesions. J. Clin. Oncol. 17(7):2020-2026.

    Google Scholar 

  53. E. Hiyama, T. Saeki, K. Hiyama, S. Takashima, J. W. Shay, Y. Matsuura, et al.(2000). Telomerase activity as a marker of breast carcinoma in fine-needle aspirated samples. Cancer 90(4):235-238.

    Google Scholar 

  54. J. I. Tsao, Y. L. Zhao, J. Lukas, X. W. Yang, A. Shah, M. Press, et al.(1997). Telomerase activity in normal and neoplastic breast. Clinical Cancer Research 3(4):627-631.

    Google Scholar 

  55. C. Poremba, W. Bocker, H. Willenbring, K. L. Schafer, F. Otterbach, H. Burger, et al.(1998). Telomerase activity in human proliferative breast lesions. Int. J. Oncol. 12(3):641- 648.

    Google Scholar 

  56. C. B. Umbricht, M. E. Sherman, J. Dome, L. A. Carey, J. Marks, N. Kim, et al.(1999). Telomerase activity in ductal carcinoma in situ and invasive breast cancer. Oncogene 18(22):3407-3414.

    Google Scholar 

  57. A. K. Meeker, W. R. Gage, J. L. Hicks, I. Simon, J. R. Coffman, E. A. Platz, et al.(2002). Telomere length assessment in human archival tissues: Combined telomere fluorescence in situ hybridization and immunostaining. Am. J. Pathol. 160(4):1259-1268.

    Google Scholar 

  58. A. K. Meeker, J. L. Hicks, E. A. Platz, G. E. March, C. J. Bennett, M. J. Delannoy, et al.(2002). Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Cancer Res. 62(22):6405-6409.

    Google Scholar 

  59. N. T. van Heek, A. K. Meeker, S. E. Kern, C. J. Yeo, K. D. Lillemoe, J. L. Cameron, et al.(2002). Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am. J. Pathol. 161(5):1541-1547.

    Google Scholar 

  60. J. N. O'sullivan, M. P. Bronner, T. A. Brentnall, J. C. Finley, W. T. Shen, S. Emerson, et al.(2002). Chromosomal instability in ulcerative colitis is related to telomere shortening. Nat. Genet. 32(2):280-284.

    Google Scholar 

  61. B. Vukovic, P. C. Park, J. Al-Maghrabi, B. Beheshti, J. Sweet, A. Evans, et al.(2003). Evidence of multifocality of telomere erosion in high-grade prostatic intraepithelial neoplasia (HPIN) and concurrent carcinoma. Oncogene 22(13):1978-1987.

    Google Scholar 

  62. F. A. Tavassoli and P. Devilee (eds.) (2003). Tumors of the Breast and Female Genital Organs, World Health Organization Classification of Tumors, International Agency for Research on Cancer (IARC), Lyon, France.

    Google Scholar 

  63. C. W. Elston and I. O. Ellis (1998). Classification of malignant breast disease. In C. W. Elston and I. O. Ellis (eds.), The Breas t, Churchill Livingston, London, p. 243.

    Google Scholar 

  64. S. R. Romanov, B. K. Kozakiewicz, C. R. Holst, M. R. Stampfer, L. M. Haupt, and T. D. Tlsty (2001). Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409(6820):633- 637.

    Google Scholar 

  65. P. Yaswen and M. R. Stampfer (2002). Molecular changes accompanying senescence and immortalization of cultured human mammary epithelial cells. Int. J. Biochem. Cell Biol. 34(11):1382-1394.

    Google Scholar 

  66. T. D. Tlsty, S. R. Romanov, B. K. Kozakiewicz, C. R. Holst, L. M. Haupt, and Y. G. Crawford (2001). Loss of chromosomal integrity in human mammary epithelial cells subsequent to escape from senescence. J. Mammary Gland Biol. Neoplasia 6(2):235-243.

    Google Scholar 

  67. C. R. Holst, G. J. Nuovo, M. Esteller, K. Chew, S. B. Baylin, J. G. Herman, et al.(2003). Methylation of p16(INK4a) promot-ers occurs in vivo in histologically normal human mammary epithelia. Cancer Res. 63(7):1596-1601.

    Google Scholar 

  68. M. R. Stampfer, J. Garbe, G. Levine, S. Lichtsteiner, A. P. Vasserot, and P. Yaswen (2001). Expression of the telomerase catalytic subunit, hTERT, induces resistance to transforming growth factor beta growth inhibition in p16INK4A( —) human mammary epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 98(8):4498-4503.

    Google Scholar 

  69. K. A. Kolquist, L. W. Ellisen, C. M. Counter, M. Meyerson, L. K. Tan, R. A. Weinberg, et al.(1998). Expression of TERT in early premalignant lesions and a subset of cells in normal tissues. Nat. Genet. 19(2):182-186.

    Google Scholar 

  70. A. Zhang, C. Zheng, M. Hou, C. Lindvall, K. J. Li, F. Erlandsson, et al.(2003). Deletion of the telomerase reverse transcriptase gene and haploinsufficiency of telomere maintenance in Cri du chat syndrome. Am. J. Hum. Genet. 72(4):940- 948.

    Google Scholar 

  71. W. Cui, S. Aslam, J. Fletcher, D. Wylie, M. Clinton, and A. J. Clark (2002). Stabilization of telomere length and karyotypic stability are directly correlated with the level of hTERT gene expression in primary fibroblasts. J. Biol. Chem. 277(41):38531-38539.

    Google Scholar 

  72. Y. Liu, H. Kha, M. Ungrin, M. O. Robinson, and L. Harrington (2002). Preferential maintenance of critically short telomeres in mammalian cells heterozygous for mTert. Proc. Natl. Acad. Sci. U.S.A. 99(6):3597-3602.

    Google Scholar 

  73. K. S. Hathcock, M. T. Hemann, K. K. Opperman, M. A. Strong, C. W. Greider, and R. J. Hodes (2002). Haploinsufficiency of mTR results in defects in telomere elongation. Proc. Natl. Acad. Sci. U.S.A. 99(6):3591-3596.

    Google Scholar 

  74. J. W. Shay and W. E. Wright (2002). Telomerase: A target for cancer therapeutics. Cancer Cell 2(4):257-265.

    Google Scholar 

  75. W. C. Hahn, S. A. Stewart, M. W. Brooks, S. G. York, E. Eaton, A. Kurachi, et al.(1999). Inhibition of telomerase lim-its the growth of human cancer cells. Nat. Med. 5(10):1164- 1170.

    Google Scholar 

  76. B. Herbert, A. E. Pitts, S. I. Baker, S. E. Hamilton, W. E. Wright, J. W. Shay, et al.(1999). Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc. Natl. Acad. Sci. U.S.A. 96(25):14276-14281.

    Google Scholar 

  77. X. Zhang, Z. Chen, Y. Chen, and Tong T. (2003). Delivering antisense telomerase RNA by a hybrid adenovirus/adeno-associated virus significantly suppresses the malignant phenotype and enhances cell apoptosis of human breast cancer cells. Oncogene 22(16):2405- 2416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meeker, A.K., Argani, P. Telomere Shortening Occurs Early During Breast Tumorigenesis: A Cause of Chromosome Destabilization Underlying Malignant Transformation?. J Mammary Gland Biol Neoplasia 9, 285–296 (2004). https://doi.org/10.1023/B:JOMG.0000048775.04140.92

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMG.0000048775.04140.92

Navigation