Skip to main content
Log in

Spectroscopy and Photophysics of Iso- and Alloxazines: Experimental and Theoretical Study

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We present a systematic study of the effect of methyl substitution on iso- and alloxazines in acetonitrile solutions. Substitution patterns have profound effects on both spectral and photophysical properties, with fluorescence quantum yields varying by more than an order of magnitude. TD-DFT calculation were used for the first time to correlate electronic structure changes with the substitution patterns, with good agreement between calculated and theoretical band positions and oscillator strengths. Both n−π* and π −π* states in these compounds are predicted, with the oscillator strengths indicating that only the π −π* states should be observable in the absorption spectra. Substitution patterns are shown to be responsible for energy order inversion between these states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. S. Song and D. E. Metzler (1967). Photochemical degradation of flavins. IV. Studies of the anaerobic photolysis of riboflavin. Photochem. Photobiol. 6, 691-709.

    PubMed  Google Scholar 

  2. P. F. Heelis (1982). The photophysical and photochemical properties of flavins (Isoalloxazines). Chem. Soc. Rev. 11, 15-39.

    Google Scholar 

  3. A. J. W. G. Visser and F. Muller (1979). Absorption and fluorescence studies on neutral and cationic isoalloxazines. Helv. Chim. Acta 62, 593-608.

    Google Scholar 

  4. M. Sun, T. A. Moore, and P. S. Song (1972). Molecular luminescence studies of flavins. I. The excited states of flavins. J. Am. Chem. Soc. 94, 1730-1740.

    PubMed  Google Scholar 

  5. S. K. Chapman, R. N. Perham, and N. S. Scrutton (Eds.) (2002) Flavins and Flavoproteins, Rudolf Weber Agency for Scientific Publications, Berlin.

    Google Scholar 

  6. P. S. Song, M. Sun, A. KozioŁowa, and J. KozioŁ (1974). Phototautomerism of lumichromes and alloxazines. J. Am. Chem. Soc. 96, 4319-4323.

    Google Scholar 

  7. A. KozioŁowa (1979). Solvent and methyl substituent effect on phototautomerism and ionization of alloxazines. Photochem. Photobiol. 29, 459-471.

    Google Scholar 

  8. M. Kasha (1986). Proton transfer spectroscopy-Perturbation of the tautomerization potential. J. Chem. Soc., Faraday Trans. II 82, 2379-2392.

    Google Scholar 

  9. J. KozioŁ and D. E. Metzler (1972). Formation and possible structures of covalent hydrates of alloxazines. Z. Naturforsch. 27, 1027-1029.

    Google Scholar 

  10. E. Sikorska and A. KozioŁowa (1996). Excited state proton transfer of methyl-and cyano-substituted alloxazines in the presence of acetic acid. J. Photochem. Photobiol. A 95, 215-221.

    Google Scholar 

  11. E. Sikorska, M. Sikorski, R. P. Steer, F. Wilkinson, and D. R. Worrall (1998). Efficiency of singlet oxygen generation by alloxazines and isoalloxazines. J. Chem. Soc. Faraday Trans. 94, 2347-2353.

    Google Scholar 

  12. J. Komasa, J. Rychlewski, and J. Koziol (1988). Electronic-structure of alloxazine and its methyl-derivatives. J. Mol. Struct. (Theochem.) 170, 205-212.

    Google Scholar 

  13. H. Szymusiak, J. Konarski, and J. KozioŁ (1990). An INDO/S MO study of alloxazine and its monomethyl derivatives. J. Chem. Soc., Perkin Trans. 2 229-236.

    Google Scholar 

  14. J. Chastain and D. B. McCormick (1991) in F. Muller (Ed.), Chemistry and Biochemistry of Flavoenzymes, CRC Press, Boston, pp. 196-200.

    Google Scholar 

  15. O. Cunningham, M. G. Gore, and T. J. Mantle (2000). Initial-rate kinetics of the flavin reductase reaction catalysed by human biliverdin-IX beta reductase (BVR-B). Biochem. J. 345, 393-399.

    PubMed  Google Scholar 

  16. H. M. Said, A. Ortiz, M. P. Moyer, and N. Yanagawa (2000). Riboflavin uptake by human-derived colonic epithelial NCM460 cells. Am. J. Physiol.-Cell Physiol. 278, C270-C276.

    PubMed  Google Scholar 

  17. Z. W. Wang and C. J. Rizzo (2000). Regioselective synthesis of beta-N1-and beta-N3-alloxazine nucleosides. Organ. Lett. 2, 227-230.

    Google Scholar 

  18. R. D. Fugate and P. S. Song (1976). Lifetime study of phototautomerism of alloxazine and lumichromes. Photochem. Photobiol. 24, 479-481.

    Google Scholar 

  19. M. S. Grodowski, B. Veyret, and K. Weiss (1977). Photochemistry of flavins. II. Photoohysical properties of alloxazines and isoalloxazines. Photochem. Photobiol. 26, 341-352.

    Google Scholar 

  20. J. D. Choi, R. D. Fugate, and P. S. Song (1980). Nanosecond time-resolved fluorescence of phototautomeric lumichrome. J. Am. Chem. Soc. 102, 5293-5297.

    Google Scholar 

  21. P. F. Heelis and G. O. Phillips (1985). A laser flash-photolysis study of the triplet-states of lumichromes. J. Phys. Chem. 89, 770-774.

    Google Scholar 

  22. P. F. Heelis, B. J. Parsons, G. O. Phillips, E. J. Land, and A. J. Swallow (1985). Pulse-radiolysis study of the effect of pH on the one-electron reduction potentials of lumichrome derivatives. J. Chem. Soc., Faraday Trans. I 81, 1225-1235.

    Google Scholar 

  23. M. Sikorski, E. Sikorska, F. Wilkinson, and R. P. Steer (1999). Studies of the photophysics and spectroscopy of alloxazine and related compounds in solution and in the solid state. Can. J. Chem. 77, 472-480.

    Google Scholar 

  24. M. Sikorski, E. Sikorska, A. KozioŁowa, R. Gonzalez-Moreno, J. L. Bourdelande, R. P. Steer, and F. Wilkinson (2001). Photophysical properties of lumichromes in water. J. Photochem. Photobiol. B 60, 114-119.

    PubMed  Google Scholar 

  25. M. V. Encinas, S. G. Bertolotti, and C. M. Previtali (2002). The interaction of ground and excited states of lumichrome with aliphatic and aromatic amines in methanol. Helv. Chim. Acta 85, 1427-1438.

    Google Scholar 

  26. A. KozioŁowa, H. Szymusiak, and J. KozioŁ (1993). Substituent and solvent effects on the phototautomerism of alloxazines. Pol. J. Chem. 67, 1813-1819.

    Google Scholar 

  27. J. K. Ewerg, F. Muller, A. J. W. G. Visser, C. Veeger, D. Bedelaar, and J. D. W. van Voorst (1979). Molecular luminescence of some isoalloxazines in apolar solvents at various temperatures. Photochem. Photobiol. 30, 463-471.

    Google Scholar 

  28. E. Gross, J. Dobson, and M. Petersilka (1996). Density-functional theory of time-dependent phenomena. Top. Curr. Chem. 181, 81-172.

    Google Scholar 

  29. W. Augustyniak, J. Koput, A. Maciejewski, M. Sikorski, R. P. Steer, and M. Szymñski (1993). Transient effect in fluorescence quenching of S2-xanthione by 3,3-diethylpentane in perfluoroalkane solvent-A steady-state and dynamic approach. Pol. J. Chem. 67, 1409-1423.

    Google Scholar 

  30. D. R. James, A. Siemiarczuk, and W. R. Ware (1992). Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes. Rev. Sci. Instrum. 63, 1710-1716.

    Google Scholar 

  31. C. Neiss, P. Saalfrank, M. Parac, and S. Grimme (2003). Quantum chemical calculation of excited state of flavin-related molecules. J. Phys. Chem. A 107, 140-147.

    Google Scholar 

  32. C. B. Martin, X. F. Shi, M. L. Tsao, D. Karweik, J. Brooke, C. M. Hadad, and M. S. Platz (2002). The photochemistry of riboflavin tetraacetate and nucleosides. A study using density functional theory, laser flash photolysis, fluorescence, UV-;Vis, and time resolved infrared spectroscopy. J. Phys. Chem. B 106, 10263-10271.

    Google Scholar 

  33. C. B. Martin, M. L. Tsao, C. M. Hadad, and M. S. Platz (2002). The reaction of triplet flavin with indole. A study of the cascade of reactive intermediates using density functional theory and time resolved infrared spectroscopy. J. Am. Chem. Soc. 124, 7226-7234.

    PubMed  Google Scholar 

  34. J. Rodriguez-Otero, E. Martinez-Nunez, A. Pena-Gallego, and S. A. Vazquez (2002). The role of aromaticity in the planarity of lumiflavin. J. Org. Chem. 67, 6347-6352.

    PubMed  Google Scholar 

  35. E. Sikorska, I. V. Khmelinskii, D. R. Worrall, S. L. Williams, R. Gonzalez-Moreno, J. L. Bourdelande, J. Koput, and M. Sikorski (2004). Photophysics of 1-methyllumichrome. J. Photochem. Photobiol. A-Chem. (In press).

  36. R. J. Platenkamp, M. H. Palmer, and A. J. W. G. Visser (1987). Ab-initio molecular-orbital studies of closed shell flavins. Eur. Biophys. J. 14, 393-402.

    Google Scholar 

  37. A. D. Becke (1993). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648-5652.

    Google Scholar 

  38. R. Ditchfield, W. J. Hehre, and J. A. Pople (1971). Self-consistent molecular orbital methods. IX. An extended Gaussian-type basis for molecular orbital studies of organic molecules. J. Chem. Phys. 54, 724.

    Google Scholar 

  39. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, A. J., Jr Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople (2002). Gaussian 98, revision A.11.3., Gaussian, Inc., Pittsburg, PA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Sikorska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sikorska, E., Khmelinskii, I.V., Worrall, D.R. et al. Spectroscopy and Photophysics of Iso- and Alloxazines: Experimental and Theoretical Study. Journal of Fluorescence 14, 57–64 (2004). https://doi.org/10.1023/B:JOFL.0000014660.59105.31

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOFL.0000014660.59105.31

Navigation