Skip to main content
Log in

Dipolar Relaxation Times of Tryptophan and Tyrosine in Glycerol and in Proteins: A Direct Evaluation from Their Fluorescence Decays

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The dipolar relaxation process induced around tryptophan, indole and tyrosine in viscous media, as well as in several single tryptophan-containing proteins (staphylococcal nuclease, ribonuclease T1, melittin and albumin), has been studied by dynamic fluorescence measurements. A new theoretical model has been developed, including the relaxation dynamics directly in the fluorescence decay function. The phase shift and demodulation data have been fitted with this new algorithm which allows to resolve the different relaxation times influencing the fluorophore excited state. These parameters are in a good agreement with those measured with the traditional time-resolved emission spectroscopy. The results indicate that indeed a correlation exists between the radiative rate change obtained with the new model and the temporal spectral shift reported in the literature. Finally, this new approach has also been extended to the case of superoxide dismutase and phosphofructokinase, allowing to measure the relaxation time even in proteins lacking a temporal spectral shift during the fluorphore's lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. R. Lakowicz (2000). Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic, New York.

    Google Scholar 

  2. J. B. A. Ross, W. R. Laws, K. W. Rousslang, and H. R. Wyssbrod (1992). in J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy, Vol. 3, Plenum Press, New York, chap. 1.

    Google Scholar 

  3. C. Eggeling, S. Berger, L. Brand, J. R. Fries, J. Schaffer, A. Volkmer, and C. A. Seidel, (2001). Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. J. Biotechnol. 86, 163-180.

    Google Scholar 

  4. L. S. Slater and P. R. Callis (1995). Molecular orbital theory of the 1La ans 1Lb states of indole. 2. An ab initio study. J. Phys. Chem. 99, 8572-8581.

    Google Scholar 

  5. A. P. Demchenko (1986). Ultraviolet Spectroscopy of Proteins, Springer-Verlag, Berlin.

    Google Scholar 

  6. M. Vincent, J. Gallay, and A. P. Demchenko (1997). Dipolar relaxation around indole as evidenced by fluorescence lifetime distributions and time-dependence spectral shifts. J. Fluoresc. 7, 107S-110S.

    Google Scholar 

  7. A. S. Ladokhin (1999). Red-edge excitation study of non-exponential fluorescence decay of indole in solution and in a protein. J. Fluorescesc. 9, 1-10.

    Google Scholar 

  8. J. R. Lakowicz (2000). On spectral relaxation in proteins. Photochem. Photobiol. 72, 421-437.

    Google Scholar 

  9. B. De Foresta, J. Gallay, J. Sopkova, P. Champeil, and M. Vincent (1999). Tryptophan octyl ester in detergent micelles of dodecylmaltoside: Fluorescence properties and quenching by brominated detergent analogs. Biophys. J. 77, 3071-3084.

    Google Scholar 

  10. H. A. Garda, A. M. Bernasconi, R. R. Brenner, F. Aguilar, M. A. Soto, and C. P. Sotomayor (1997). Effect of polyunsaturated fatty acid deficiency on dipole relaxation in the membrane interface of rat liver microsomes. Biochim. Biophys. Acta 1323,97-104.

    Google Scholar 

  11. L. A. Bagatolli, T. Parasassi, G. D. Fidelio, and E. Gratton (1999). A model for the interaction of 6-lauroyl-2-(N,N dimethylamino)naphthalene with lipid environments: Implications for spectral properties. Photochem. Photobiol. 4, 557-564.

    Google Scholar 

  12. S. S. Antollini, M. A. Soto, I. Bonini de Romanelli, C. Gutierrez-Merino, P. Sotomayor, and F. J. Barrantes (1996). Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer. Biophys. J. 70, 1275-1284.

    Google Scholar 

  13. G. Mei, A. Di Venere, F. De Matteis, and N. Rosato (2003). The recovery of dipolar relaxation times from fluorescence decays as a tool to probe local dynamics in single tryptophan proteins. Archives Biochem. Biophys. 417, 159-164.

    Google Scholar 

  14. G. Mei, N. Rosato, N. Silva, R. Rusch, E. Gratton, I. Savini, and A. Finazzi Agrò (1992). Denaturation of human Cu/Zn superoxide dismutase by guanidine hydrochloride: A dynamic fluorescence study. Biochemistry 31, 7224-7230.

    Google Scholar 

  15. E. Gratton, and M. Limkeman (1983). A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution. Biophys. J. 44, 315-325.

    Google Scholar 

  16. G. Mei, A. Di Venere, F. De Matteis, A. Lenzi, and N. Rosato (2001). Asymmetrical distribution of intrinsic fluorescence lifetimes in proteins. J. Fluorescence 11, 319-333.

    Google Scholar 

  17. J. R. Alcala, E. Gratton, and F. G. Prendergast (1987). Fluorescence lifetime distributions in proteins. Biophys. J. 51, 597-604.

    Google Scholar 

  18. J.R. Lakowicz, H. Cherek, I. Gryczynski, N. Joshi, and M.L. Johnson (1987). Analysis of fluorescence decay kinetics measured in the frequency domain using distributions of decay times. Biophys. Chem. 28,35-50.

    Google Scholar 

  19. Ware, W. R. (1992). in V. Ramamurthy (Ed.), Photochemistry in organized and costrained media, VCA Publisher, New York, chap. 13.

    Google Scholar 

  20. A. G. Szabo, and D. M. Rayner (1980). Fluorescence decay of tryptophan conformers in aqueous solution. J. Am. Chem. Soc. 102, 554-563.

    Google Scholar 

  21. J. W. Petrich, M. C. Chang, D. B. McDonald, and G. R. Fleming (1983). On the origin of nonexponential fluorescence decay in tryptophan and its derivatives. J. Am. Chem. Soc. 105, 3824-3836.

    Google Scholar 

  22. R. F. Chen, J. R. Knutson, H. Ziffer, and D. Porter (1991). Fluorescence of tryptophan dipeptides: Correlations with the rotamer model. Biochemistry 30, 5184-5195.

    Google Scholar 

  23. B. Liu, R. K. Yhalji, P. D. Adams, F. R. Fronczek, M. L. McLaughlin, and M. D. Barkley (2002). Fluorescence of cis-1-Amin-2-(3-indolyl)cyclohexane-1-carboxylic acid: A single tryptophan χ1 rotamer model. J. Am. Chem. Soc. 124, 13329-13338.

    Google Scholar 

  24. M. R. Eftink, Y. Jia, D. Hu, and C. A. Ghiron (1995). Fluorescence studies with tryptophan analogs: excited state interactions involving the side chain amino group. J. Phys. Chem. 99, 5713-5723.

    Google Scholar 

  25. J. R. Lakowicz, and H. C. Cherek (1980). Dipolar relaxation in proteins on the nanosecond timescale observed by wavelength-resolved phase fluorometry of tryptophan fluorescence. J. Biol. Chem. 255, 831-834.

    Google Scholar 

  26. A. P. Demchenko, and A. S. Ladokhin (1988). Red-edge-excitation fluorescence spectroscopy of indole and tryptophan. Eur. Biophys. J. 15, 369-379.

    Google Scholar 

  27. J.R. Lakowicz, H. Szmacinski, and I. Gryczynski (1988). Picosecond resolution of indole anisotropy decays and spectral relaxation by 2 GHz frequency-domain fluorometry. Photochem. Photobiol. 47, 31-41.

    Google Scholar 

  28. D. Toptygin and L. Brand (2000). Spectrally-and time-resolved fluorescence emission of indole during solvent relaxation: A quantitative model. Chem. Phys. Lett. 322, 496-502.

    Google Scholar 

  29. E. J. P. Malar and K. Jug (1984). Structures and properties of excited states of benzene and some monosubstituted benzenes. J. Phys. Chem. 88, 3508-3516.

    Google Scholar 

  30. A. P. Demchenko (1988). Red-edge-excitation fluorescence spectroscopy of single-tryptophan proteins. Eur. Biophys. J. 16, 121-129.

    Google Scholar 

  31. P. R. Callis (1997). 1La and 1Lb transitions of tryptophan: Applications of theory and experimental observations to fluorescence of proteins. Methods Enzymol. 278, 113-150.

    Google Scholar 

  32. M.R. Eftink, I. Gryczynski, W. Wiczk, G. Laczko, and J.R. Lakowicz (1991). Effects of temperature on the fluorescence intensity and anisotropy decays of staphylococcal nuclease and the less stable nuclease-conA-SG28 mutant. Biochemistry 30, 8945-8653.

    Google Scholar 

  33. A. J. W. G. Visser, J. van Engelen, N. V. Visser, A. van Hoek, R. Hilhorst, and R. B. Freedman (1994). Fluorescence dynamics of staphylococcal nuclease in aqueous solution and reversed micelles. Biochim. Biophys. Acta 1204, 225-234.

    Google Scholar 

  34. A. P. Demchenko, I. Gryczynsky, Z. Gryczynsky, W. Wiczk, H. Malak, and M. Fishman (1993). Intramolecular dynamics in the environment of the single tryptophan residue in staphylococcal nuclease. Biophys. Chem. 48,39-48.

    Google Scholar 

  35. M. Eftinkand C.A. Ghiron (1987). Frequencydomainmeasurements of the fluorescence lifetime of ribonuclease T1. Biophys. J. 52, 467-473.

    Google Scholar 

  36. I. Gryczynski, M. Eftink, and J. R. Lakowicz (1988). Conformation heterogeneity in proteins as an origin of heterogeneous fluorescence decays, illustrated by native and denatured ribonuclease T1. Biochim. Biophys. Acta 954, 244-252.

    Google Scholar 

  37. J. R. Lakowicz, B. P. Maliwal, H. Cherek, and A. Balter (1983). Rotational freedom of tryptophan residues in proteins and peptides. Biochemistry 22, 1741-1752.

    Google Scholar 

  38. U. Heinemann and W. Saenger (1982). Specific protein-nucleic acid recognition in ribonuclease T1-2-guanylic acid complex: An X-ray study. Nature 299,27-31.

    Google Scholar 

  39. A. P. Demchenko and A. S. Ladokhin (1988). Temperature-dependent shift of fluorescence spectra without conformational changes in protein; studies of dipole relaxation in the melittin molecule. Biochim. Biophys. Acta 955, 352-360.

    Google Scholar 

  40. M. Fisz (1963). Probability Theory and Mathematical Statistics, Wiley, New York, chap. 12.

    Google Scholar 

  41. A. Buzády, J. Erostyák, and B. Somogyi (2000). Phase-fluorimetry study on dielectric relaxation of human serum albumin. Biophys. Chem. 88, 153-163.

    Google Scholar 

  42. S. J. Kim, F. N. Chowdhury, W. Stryjewski, E. S. Younathan, P. S. Russo, and M. D. Barkley (1993). Time-resolved fluorescence of the single tryptophan of Bacillus stearothermophilus phosphofructokinase. Biophys. J. 65, 215-226.

    Google Scholar 

  43. N. Silva, E. Gratton, G. Mei, N. Rosato, R. Rusch, and A. Finazzi Agro' (1993). Molten globule monomers in human superoxide dismutase. Biophys. Chem. 48, 171-182.

    Google Scholar 

  44. Y. Chen and M. D. Barkley (1998). Toward understanding tryptophan fluorescence in proteins. Biochemistry 37, 9976-9982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Rosato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, G., Di Venere, A., Agrò, A.F. et al. Dipolar Relaxation Times of Tryptophan and Tyrosine in Glycerol and in Proteins: A Direct Evaluation from Their Fluorescence Decays. Journal of Fluorescence 13, 467–477 (2003). https://doi.org/10.1023/B:JOFL.0000008057.70137.c7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOFL.0000008057.70137.c7

Navigation