Skip to main content
Log in

Activation of Na/H Exchange in Erythrocytes of Frog Rana ridibunda

  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Transport of Na+ in isolated erythrocytes of the frog Rana ridibunda was studied using radioactive isotope 22 22Na. Treatment of erythrocytes with β-adrenergic agonist isoproterenol (ISP) or with a combination of ISP and phosphodiesterase blocker 3-isobutyl-methyl-xanthine (IBMX) did not affect the Na+ transport into the cells. These data indicated that cAMP-dependent protein kinase A did not participate in regulation of the Na+ transport into the frog erythrocytes. Incubation of erythrocytes with protein kinase C activator phorbol ester (PMA, 0.15 µM) led to a pronounced increase of 22 22Na accumulation and intracellular Na+ concentration. These changes of the Na+ transport into the cells were completely blocked in the presence of 50 µM ethyl-isopropyl-amiloride (EIPA), a selective blocker of the NHE1-isoform of Na+/H+ exchanger. Hence, PMA produced activation of Na+/H+ exchange in frog erythrocytes. The unidirectional Na+ influx into erythrocytes amounted, on average, to 0.99 ± 0.12 and 147 ± 9 mmol/l cells/h for control and PMA-treated cells, respectively. The EIPA concentration producing a 50% inhibition of the PMA-induced Na+ influx (IC50) was 0.28 µM. A high sensitivity of the frog Na/H exchanger to EIPA indicates its similarity with the mammalian NHE1 isoform. The obtained data for the first time clearly indicate an important role of PKC in Na/H exchange regulation in the frog red blood cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Noel, J. and Pouyssegur, J., Hormonal Regulation, Pharmacology, and Membrane Sorting of Vertebrate Na+/H+ Exchange Isoforms, Am. J. Physiol., 1995, vol. 268, pp. C283–C296.

    Google Scholar 

  2. Wakabayashi, S., Shigekawa, M., and Pouyssegur, J., Molecular Physiology of Vertebrate Na+/H+ Exchangers, Physiol. Rev., 1997, vol. 77, pp. 51–74.

    Google Scholar 

  3. Counillon, L. and Pouyssegur, J., The Expanding Family of Eucaryotic Na+/H+ Exchangers, J. Biol. Chem., 2000, vol. 275, pp. 1–4.

    Google Scholar 

  4. Orlov, S.N., Kuznetsov, S.R., Pokudin, N.I., Tremblay, J., and Hamet, P., Can We Use Erythrocytes for the Study of the Activity of the Ubiquitous Na+/H+ Exchanger (NHE-1) in Essential Hypertension?, Am. J. Hypertens., 1998, vol. 11, pp. 774–783.

    Google Scholar 

  5. Borgese, F., Sardet, C., Cappadoro, M., Pouyssegur, J., and Motais, R., Cloning and Expression of a cAMPActivated Na+/H+ Exchanger: Evidence That the Cytoplasmic Domain Mediates Hormonal Regulation, Proc. Natl Acad. Sci. USA, 1992, vol. 89, pp. 6765–6769.

    Google Scholar 

  6. Malapert, M., Guizouarn, H., Fievet, B., Jahns, R., Garcia-Romeu, F., Motais, R., and Borgese, F., Regulation of Na+/H+ Antiporter in Trout Red Blood Cells, J. Exp. Biol., 1997, vol. 200 (Part 2), pp. 353–360.

    Google Scholar 

  7. Gusev, G.P., Na+/H+ Exchanger in Tissues of Lower Vertebrates, Zh. Evol. Biokhim. Fiziol., 2001, vol. 37, pp. 457–462.

    Google Scholar 

  8. Cala, P.M., Volume-Sensitive Ion Fluxes in Amphiuma Red Blood Cells: General Principles Governing Na-H and K-H Exchange Transport and Cl-HCO3 Exchange Coupling, Curr. Topics Membrane Transport, 1986, vol. 27, pp. 193–218.

    Google Scholar 

  9. McLean, L.A., Zia, S., Gorin, F.A., and Cala, P.M., Cloning and Expression of the Na+/H+ Exchanger from Amphiuma RBCs: Resemblance to Mammalian NHE1, Am. J. Physiol., 1999, vol. 276, pp. C1025–C1037.

    Google Scholar 

  10. Tufts, B.L., Nikinmaa, M., Steffensen, J.F., and Randall, D.J., Ion Exchange Mechanisms on the Erythrocyte Membrane of the Aquatic Salamander, Amphiuma tridactylum, J. Exp. Biol., 1987, vol. 133, pp. 329–338.

    Google Scholar 

  11. Tufts, B.L., Mense, D.S., and Randall, D.J., The Effects of Forced Activity on Circulating Catecholamines and pH and Water Content of Erythrocytes in the Toad, J. Exp. Biol., 1987, vol. 128, pp. 411–418.

    Google Scholar 

  12. Gusev, G.P., Agalakova, N.I., and Lapin, A.V., Activation of the Na+-K+-Pump in Frog Erythrocytes by Catecholamines and Phosphodiesterase Blockers, Biochem. Pharmacol., 1996, vol. 52, pp. 1347–1353.

    Google Scholar 

  13. Rudolph, S.A. and Greengard, P., Effects of Catecholamines and Prostaglandin E on Cyclic AMP, Cation Fluxes, and Protein Phosphorylation in the Frog Erythrocyte, J. Biol. Chem., 1980, vol. 255, pp. 8534–8540.

    Google Scholar 

  14. Palfrey, C.H. and Greengard, P., Hormone-Sensitive Ion Transport Systems in Erythrocytes as Models for Epithelial Ion Pathways, Ann. N. Y. Acad. Sci., 1981, vol. 372, pp. 291–308.

    Google Scholar 

  15. Agalakova, N.I., Lapin, A.V., and Gusev, G.P., Transport of Sodium Ions in Erythrocytes of Frogs Rana temporaria and Rana ridibunda, Biologich. Membr., 1996, vol. 13, pp. 153–161.

    Google Scholar 

  16. Aurbach, G.D., Spiegel, A.M., and Gardner, J.D., Beta-Adrenergic Receptors, Cyclic AMP, and Ion Transport in the Avian Erythrocyte, Adv. Cyclic Nucleotide Res., 1975, vol. 5, pp. 117–132.

    Google Scholar 

  17. Joiner, C.H., Jiang, M., Fathallah, H., Giraud, F., and Franco, R.S., Deoxygenation of Sickle Red Blood Cells Stimulates KCl Cotransport without Affecting Na+/H+ Exchange, Am. J. Physiol., 1998, vol. 274, pp. C1466–C1475.

    Google Scholar 

  18. Orlov, S.N., Postnov, I.Yu., Pokudin, N.I., Kukharenko, V.Yu., and Postnov, Yu.V., Enhanced Na+/H+ Exchange in Erythrocytes of Hypertensive Patients, Byull. Eksp. Biol. Med., 1988, vol. 106, pp. 286–289.

    Google Scholar 

  19. Orlov, S.N., Pokudin, N.I., Gulak, P.V., and Postnov, Yu.V., Volume-Dependent Regulation of Cation Transport and Polyphosphoinositide Metabolism in Human and Rat Erythrocytes: Features Revealed in Primary Hypertension, Physiol. Bohemoslov., 1990, vol. 39, pp.15–26.

    Google Scholar 

  20. Borgese, F., Malapert, M., Fievet, B., Pouyssegur, J., and Motais, R., The Cytoplasmic Domain of the Na+/H+ Exchangers (NHEs) Dictates the Nature of the Hormonal Response: Behavior of a Chimeric Human NHE1/Trout Beta NHE Antiporter, Proc. Natl Acad. Sci. USA, 1994, vol. 91, pp. 5431–5435.

    Google Scholar 

  21. Romero, M., Guizouarn, H., Pellissier, B., Garcia-Romeu, F., and Motais, R., The Erythrocyte Na+/H+ Exchangers of Eel (Anguilla anguilla) and Rainbow Trout (Oncorhynchus mykiss): A Comparative Study, J. Exp. Biol., 1996, vol. 199, pp. 415–426.

    Google Scholar 

  22. Ceolotto, G., Sartori, M., Felice, M., Clari, G., Bordin, L., and Semplicini, A., Effect of Protein Kinase C and Insulin on Na+/H+ Exchange in Red Blood Cells of Essential Hypertensives, J. Hum. Hypertens., 1999, vol. 13, pp. 321–327.

    Google Scholar 

  23. Martin-Requero, A., Daza, F.J., Hermida, O.J., Buitta, N., and Parrilla, R., Role of Ca2+ and Protein Kinase C Receptor-Mediated Activation of Na+/H+ Exchange in Isolated Liver Cells, Biochem. J., 1997, vol. 325, pp. 631–636.

    Google Scholar 

  24. Jorgensen, N.C., Amiloride-Sensitive Na+/H+ Exchange Stimulated by Cellular Acidification or Shrinkage in Red Blood Cells of the Frog, Rana temporaria, J. Comp. Physiol., 1995, vol. 165 B, pp. 450–457.

    Google Scholar 

  25. Hasselblatt, P., Warth, R., Schulz-Baldes, A., Greger, R., and Bleich, M., pH Regulation in Isolated in vitro Perfused Rat Colonic Crypts, Pflugers Arch., 2000, vol. 441, pp. 118–124.

    Google Scholar 

  26. Orlov, S.N., Adarichev, V.A., Devlin, A.M., Maximova, N.V., Sun, Y.L., Tremblay, J., Dominiczak, A.F., Postnov, Y.V., and Hamet, P., Increased Na+/H+ Exchanger Isoform 1 Activity in Spontaneously Hypertensive Rats: Lack of Mutations within the Coding Region of NHE1, Biochim. Biophys. Acta, 2000, vol. 1500, pp. 169–180.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gusev, G.P., Ivanova, T.I. Activation of Na/H Exchange in Erythrocytes of Frog Rana ridibunda . Journal of Evolutionary Biochemistry and Physiology 39, 439–445 (2003). https://doi.org/10.1023/B:JOEY.0000010240.97364.41

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEY.0000010240.97364.41

Keywords

Navigation