Skip to main content
Log in

Identification of Floral Volatiles Involved in Recognition of Oilseed Rape Flowers, Brassica napus by Honeybees, Apis mellifera

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Volatiles from oilseed rape, Brassica napus, flowers were sampled by air entrainment and their relevance to the natural odor profile of the flowers was confirmed by conditioned proboscis extension (CPE) assays with honeybee, Apis mellifera L., foragers. Coupled gas chromatography (GC)-CPE analysis of the air entrainment samples was used to locate key compounds involved in the recognition of B. napus flowers, and the compounds were then identified using coupled gas chromatography-mass spectrometry and comparison with authentic samples. Six regions of the gas chromatograms elicited CPE responses from bees previously conditioned to the total extract, and from these areas 16 compounds were identified that elicited CPE activity from conditioned bees when tested with synthetic samples. Eight of the 16, α-pinene, phenylacetaldehyde, p-cymene, α-terpinene, linalool, 2-phenyl-ethanol, (E,E)-α-farnesene, and 3-carene, gave the highest responses. When the bees were conditioned to the total extract of flower volatiles, a mixture of the eight components elicited responses from 83% of the individuals, suggesting that the eight-component mixture accounted for a major part of the CPE activity of the total extract. In addition, a mixture of the three most active compounds, phenylacetaldehyde, linalool, and (E,E,)-α-farnesene, evoked responses from 85% of the bees after the latter had been conditioned to the eight-component mixture. Thus, these three compounds appear to play a key role in the recognition of the eight component mixture and, by inference, of oilseed rape flowers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • BITTERMAN, M. E., MENZEL, R., FIETZ, A., and SCHÄFER, S. 1983. Classical conditioning of proboscis extension in honeybees (Apis mellifera). J. Comp. Psychol. 97:107–119.

    Google Scholar 

  • BLIGHT, M. M. 1990. Techniques for isolation and characterization of volatile semiochemicals of phytophagous insects, pp. 281–288, in A. R. McCaffery and I. D. Wilson (eds.). Chromatography and Isolation of Insect Hormones and Pheromones. Plenum Press, New York.

    Google Scholar 

  • BLIGHT, M. M., HICK, A. J., PICKET, J. A., SMART, L. E., WADHAMS, L. J., and WOODCOCK, C. M. 1992. Volatile plant metabolites involved in host plant recognition by the cabbage seed weevil, Ceutorhynchus assimilis Payk., pp. 105–106, in S. B. J. Menken, J. H. Visser, and P. Harrewijn (eds.). Proceedings of the 8th International Symposium on Insect-Plant Relationships. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • BLIGHT, M. M., PICKETT, J. A., WADHAMS, L. J., and WOODCOCK, C. M. 1995. Antennal perception of oilseed rape, Brassica napus (Brassicaceae), volatiles by the cabbage seed weevil Ceutorhynchus assimilis (Coleoptera, Curculionidae). J. Chem. Ecol. 21:1649–1664.

    Google Scholar 

  • BORG-KARLSON, A.-K., UNELIUS, C. R., VALTEROVÁ, I., and NILSSON, L. A. 1996. Floral fragrance chemistry in the early flowering shrub Daphne mezereum. Phytochemistry 41:1477–1483.

    Google Scholar 

  • DE JONG, R., and PHAM-DELÈGUE, M.-H. 1991. Electroantennogram responses related to olfactory conditioning in the honey bee (Apis mellifera ligustica). J. Insect Physiol. 37:319–324.

    Google Scholar 

  • EVANS, K. A., and ALLEN-WILLIAMS, L. J. 1992. Electroantennogram responses of the cabbage seed weevil, Ceutorhynchus assimilis, to oilseed rape, Brassica napus ssp. oleifera, volatiles. J. Chem. Ecol. 18:1641–1659.

    Google Scholar 

  • FLATH, R. A., CUNNINGHAM, R. T., MON, T. R., and JOHN, J. O. 1994. Additional male Mediterranean fruitfly (Ceratitis capitata Wied.) attractants from angelica seed oil (Angelica archangelica L.). J. Chem. Ecol. 20:1969–1983.

    Google Scholar 

  • GETZ, W. M., and SMITH, K. B. 1991. Olfactory perception in honeybees: Concatenated and mixed odorant stimuli, concentration, and exposure effects. J. Comp. Physiol. A 169:215–230.

    Google Scholar 

  • INAZUKA, S. 1982. Cockroach repellents contained in Japanese mint and Scotch spearmint. Nippon Noyaku Gakkaishi 7:145–154 (Chem. Abstr. 97:122030).

    Google Scholar 

  • JACOBSON, M., UEBEL, E. C., and LUSBEY, W. R. 1984. Essential oil yields medfly attractant. Chem. Eng. News Dec. 17:24.

    Google Scholar 

  • JAKOBSEN, H. B., FRIIS, P., NIELSEN, J. K., and OLSEN, C. E. 1994. Emission of volatiles from flowers and leaves of Brassica napus in situ. Phytochemistry 37:695–699.

    Google Scholar 

  • KRISTON, I. 1973. Die Bewertung von Duft-und Farbsignalen als Orientierungshilfen an der Futterquelle durch Apis mellifera L. J. Comp. Physiol. 84:77–94.

    Google Scholar 

  • MARION-POLL, F. 1995. Object-oriented approach to fast display of electrophysiological data under MS-Windows. J. Neurosci. Methods 63:197–204.

    Google Scholar 

  • MARION-POLL, F., and TOBIN, T. R. 1992. Temporal coding of phermonoe pulses and trains in Manduca sexta. J. Comp. Physiol. A 171:505–512.

    Google Scholar 

  • MAUELSHAGEN, J., and GREGGERS, U. 1993. Experimental access to associative learning in honey bees. Apidologie 24:249–266.

    Google Scholar 

  • MENZEL, R. 1967. Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene (Apis mellifica). Z. Vergl. Physiol. 56:22–62.

    Google Scholar 

  • MESQUIDA, J., MARILLEAU, R., PHAM-DELÈGUE, M.-H., and RENARD, M. 1988. A study of rapeseed (Brassica napus L. var. oleifera Metzger) flower nectar secretions. Apidologie 19:307–318.

    Google Scholar 

  • MOOKHERJEE, B. D., TRENKLE, R. W., WILSON, R. A., ZAMPINO, M., SANDS, K. P., and MUSSINAN, C. J. 1988. Fruits and flowers: Live vs dead—which do we want, pp. 415–424, in B. M. Lawrence, B. D. Mookherjee, and B. J. Willis (eds.). Flavors and Fragrances: A World Perspective. Proceedings, 10th International Congress of Essential Oils, Fragrances and Flavors. Washington DC, November 16–20, 1986. Developments in Food Science series, Vol. 18, Elsevier, Amsterdam.

    Google Scholar 

  • MORI, K. 1994. Synthetic and stereochemical aspects of pheromone chemistry. Pure Appl. Chem. 66:1991–1998.

    Google Scholar 

  • MURRAY, K. E. 1969. α-Farnesene: Isolation from the natural coating of apples. Aust. J. Chem. 22:197–204.

    Google Scholar 

  • NIST STANDARD REFERENCE DATA BASE. 1990 (Version 3.01). Office of the Standard Reference Data Base, National Institute of Standards and Technology, Gaithersburg, Maryland.

    Google Scholar 

  • NORDLANDER, G. 1991. Host finding in the pine weevil Hylobius abietis: Effects of conifer volatiles and added limonene. Entomol. Exp. Appl. 59:229–237.

    Google Scholar 

  • OHLOFF, G. 1994. Scent and Fragrances. The Fascination of Odors and their Chemical Perspectives. Springer-Verlag, Berlin.

    Google Scholar 

  • PHAM-DELÈGUE, M.-H., MASSON, C., ETIÉVANT, P., and AZAR, M. 1986. Selective olfactory choices of the honeybee among sunflower aromas: A study by combined olfactory conditioning and chemical analysis. J. Chem. Ecol. 12:781–793.

    Google Scholar 

  • PHAM-DELÈGUE, M.-H., BAILEZ, O., BLIGHT, M. M., MASSON, C., PICARD-NIZOU, A. L., and WADHAMS, L. J. 1993. Behavioural discrimination of oilseed rape volatiles by the honeybee Apis mellifera L. Chem. Senses 18:483–494.

    Google Scholar 

  • PICKETT, J. A. 1990. Gas chromatography-mass spectrometry in insect pheromone identification: Three extreme case histories, pp. 299–309, in A. R. McCaffery and I. D. Wilson (eds.). Chromatography and Isolation of Insect Hormones and Pheromones. Plenum Press, New York.

    Google Scholar 

  • SANDOZ, J.-C., ROGER, B., and PHAM-DELÈGUE, M.-H. 1995. Olfactory learning and memory in the honeybee: Comparison of different classical conditioning procedures of the proboscis extension response. C. R. Acad. Sci. Paris, Ser. III. 318:749–755.

    Google Scholar 

  • SILVERSTEIN, R. M. 1979. Enantiomeric composition and bioactivity of chiral semiochemicals in insects, pp. 133–146, in F. J. Ritter (ed.). Chemical Ecology: Odour Communication in Animals. Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • SILVERSTEIN, R. M. 1988. Chirality in insect communication. J. Chem. Ecol. 14:1981–2004.

    Google Scholar 

  • SMITH, B. H. 1991. The olfactory memory of the honeybee Apis mellifera. I. Odorant modulation of short-and intermediate-term memory after single-trial conditioning. J. Exp. Biol. 161:367–382.

    Google Scholar 

  • TERANISHI, R., BUTTERY, R. G., MATSUMOTO, K. E., STERN, D. J., CUNNINGHAM, R. T., and GOTHILF, S. 1987. Recent developments in chemical attractants for tephritid fruit flies, pp. 431–438, in G. R. Waller (ed.). Symposium Series 330. American Chemical Society, Washington, DC.

    Google Scholar 

  • TOLLSTEN, L., and BERGSTROM, G. 1988. Headspace volatiles of whole plants and macerated plant parts of Brassica and Sinapis. Phytochemistry 27:4013–4018.

    Google Scholar 

  • WADHAMS, L. J., BLIGHT, M. M. KERGUELEN, V., LE MÉTAYER, M., MARION-POLL, F., MASSON, C., PHAM-DELÈGUE, M.-H., and WOODCOCK, C. M. 1994. Discrimination of oilseed rape volatiles by honey bee: Novel combined gas chromatographic-electrophysiological behavioral assay. J. Chem. Ecol. 20:3221–3231.

    Google Scholar 

  • WARTHEN, J. D., and MC INNIS, D. O. 1989. Isolation and identification of male medfly attractive components in Litchi chinensis stems and Ficus spp. stem exudates. J. Chem. Ecol. 15:1931–1946.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blight, M.M., Métayer, M.L., Delègue, MH.P. et al. Identification of Floral Volatiles Involved in Recognition of Oilseed Rape Flowers, Brassica napus by Honeybees, Apis mellifera . J Chem Ecol 23, 1715–1727 (1997). https://doi.org/10.1023/B:JOEC.0000006446.21160.c1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEC.0000006446.21160.c1

Navigation