Skip to main content
Log in

Comparison of Time-Dependent Tracer Ages in the Western North Pacific: Oceanic Background Levels of (SF6, CFC-11, CFC-12 and CFC-113

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

To verify the actual usefulness of time-dependent tracer dating techniques in the ocean, we simultaneously obtained two cross sections of sulfur hexafluoride (SF6) and chlrofluoromethanes (CFC-11, trichlorofluoromethane; CFC-12, dichloro-difluromethane; CFC-113, trichlorotrifluoroethane) in the western North Pacific in 1998. The vertical distribution patterns of SF6 and CFC-113 were similar in shape to those of CFC-11 and CFC-12. Maximum penetration depths of SF6 and CFC-113 remained around 800 m in the subpolar region and 400 m in the tropical region, while the maximum penetration depths of CFC-11 and CFC-12 were still found below 1000 m depth. We also found all maximum contents of these tracers around 26.6−26.8σθ with a gradual decrease southward. This suggested that a new subsurface water mass in the subpolar region spread out over the entire North Pacific, which agrees closely with previous studies based on the salinity minimum. Moreover, we compared the tracer ages (the elapsed period of a water mass from when the water mass left from the ocean surface) using ten time-dependent tracer dating techniques, CFC-11, CFC-12, CFC-113, SF6, CFC-11/CFC-12, CFC-113/CFC-11, CFC-113/CFC-12, SF6/CFC-11, SF6/CFC-12 and SF6/CFC-113. This quantitative evaluation of multiple tracer dating techniques in the ocean was the first confirmation of its usefulness based on the observational data on the ocean basin-wide scale. We conclude that SF6/CFC-11, SF6/CFC-12, SF6/CFC-113 and SF6 dating techniques would be the most promising tools for determining the age of water mass not only just for the past several decades but for the future, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bu, X. and M. J. Warner (1995): Solubility of chlorofluorocarbon 113 in water and seawater. Deep-Sea Res., 42, 1151-1161.

    Article  Google Scholar 

  • Bullister, J. L. and R. F. Weiss (1988): Determination of CCl3F and CCl2F2 in seawater and air. Deep-Sea Res., 35, 839-853.

    Article  Google Scholar 

  • Bullister, J. L., D. P. Wisegarver and F. A. Menzia (2002): The solubility of sulfur hexafluoride in water and seawater. Deep-Sea Res., 49, 175–187.

    Article  Google Scholar 

  • Doney, S. C. and J. L. Bullister (1992): A chlorofluorocarbon section in the eastern North Atlantic. Deep-Sea Res., 39, 1857–1883.

    Article  Google Scholar 

  • Doney, S. C., W. J. Jenkins and J. L. Bullister (1997): A comparison of ocean tracer dating techniques on a meridional section in the eastern North Atlantic. Deep-Sea Res., 44, 603–626.

    Article  Google Scholar 

  • Emerson, S., S. Mecking and J. Abell (2001): The biological pump in the subtropical North Pacific: nutrient sources, Redfield ratios, and recent changes. Global Biogeochem. Cycles, 15, 535–554.

    Article  Google Scholar 

  • Fine, R. A., J. L. Reid and H. G. Ostlund (1981): Circulation of tritium in the Pacific Ocean. J. Phys. Oceanogr., 11, 3–14.

    Article  Google Scholar 

  • Gruber, N., J. L. Sarmiento and T. F. Stocker (1996): An improved method for detecting anthropogenic CO2 in the oceans. Global Biogeochem. Cycles, 10, 809–837.

    Article  Google Scholar 

  • Law, C. S. and A. J. Watson (2001): Determination of Persian Gulf Water transport and oxygen utilization rates using SF6 as a novel transient tracer. Geophys. Res. Lett., 28, 815-818.

    Article  Google Scholar 

  • Law, C. S., A. J. Watson and M. I. Liddicoat (1994): Automated vacuum analysis of sulfur hexafluoride in seawater: derivation of the atmospheric trend (1970-1993) and potential as transient tracer. Mar. Chem., 48, 57–69.

    Article  Google Scholar 

  • Ledwell, J. R. and A. J. Watson (1991): The Santa Monica Basin tracer experiment: a study of diapycnal and isopycnal mixing. J. Geophys. Res., 96, 8695–8718.

    Google Scholar 

  • Maiss, M. and C. A. M. Brenninkmeijer (1998): Atmospheric SF6: trends, sources, and prospects. Environ. Sci. Tech., 32, 3077–3086.

    Article  Google Scholar 

  • Ono, T., Y. W. Watanabe and S. Watanabe (2000): Recent increase of DIC in the western North Pacific. Mar. Chem., 72, 317–328.

    Article  Google Scholar 

  • Ono, T., T. Midorikawa, Y. W. Watanabe, K. Tadokoro and T. Saino (2001): Temporal increase of phosphate and apparent oxygen utilization in the subsurface waters of western subarctic Pacific from 1968 and 1998. Geophys. Res. Lett., 28, 3285–3288.

    Article  Google Scholar 

  • Ravishankara, A., S. Solomon and A. A. Turnipseed (1993): Atmospheric lifetimes of long-lived halogenated species. Nature, 259, 194–199.

    Google Scholar 

  • Reid, J. L. (1965): Intermediate waters of the Pacific Ocean. Dr. Sci. Thesis, Johns Hopkins University.

  • Smethie, W. M. J., D. W. Chipman and K. P. Koltermann (1988): Chlorofluoromethanes in the Arctic Mediterranean seas: evidence for formation of bottom water in the Eurasian Basin and deep-water exchange through Fram Strait. Deep-Sea Res., 35, 347–369.

    Article  Google Scholar 

  • Tokieda, T., S. Watanabe and S. Tsunogai (1996): Chlorofluorocarbons in the western North Pacific in 1993 and formation of North Pacific Intermediate Water. J. Oceanogr., 52, 478–490.

    Article  Google Scholar 

  • Upstill-Goddard, R. C., A. J. Watson, P. S. Liss and M. I. Liddicoat (1990): Gas transfer velocities in lakes measured with SF6. Tellus, 42B, 364–377.

    Google Scholar 

  • VanScoy, K. M., D. B. Olson and R. A. Fine (1991): Ventilation of North Pacific Intermediate Water: the role of the Alaskan Gyre. J. Geophys. Res., 96, 16801–16810.

    Article  Google Scholar 

  • Walker, S. J., R. F. Weiss and P. K. Salameh (2000): Reconstructed histories of the annual mean atmospheric mole fractions for the halocarbons CFC11, CFC12, CFC113 and carbon tetrachloride. J. Geophys. Res., 105, 14285–14296.

    Article  Google Scholar 

  • Wanninkhof, R., J. R. Ledwell and W. S. Broecker (1985): Gas exchange-wind speed relation measured with sulfur hexafluoride on lake. Science, 227, 1224–1226.

    Google Scholar 

  • Warner, M. J. and R. F. Weiss (1985): Solubility of chlorofluorocarbons 11 and 12 in water and seawater. Deep-Sea Res., 32, 1485–1497.

    Article  Google Scholar 

  • Warner, M. J., J. L. Bullister, D. P. Wisegarver, R. H. Gammon and R. F. Weiss (1996): Basin-wide distribution of chlorofluorocarbons CFC-11 and CFC-12 in the North Pacific: 1985-1989. J. Geophys. Res., 101, 20525–20542.

    Article  Google Scholar 

  • Watanabe, Y. W., K. Harada and K. Ishikawa (1994): Chrolofluorocarbons in the central North Pacific and southward spreading time of North Pacific Intermediate Water. J. Geophys. Res., 99, 25195–25213.

    Article  Google Scholar 

  • Watanabe, Y. W., A. Ishida, M. Tamaki, K. Okuda and M. Fukasawa (1997): Water column inventories of CFCs and production rate of intermediate water in the North Pacific. Deep-Sea Res., 44, 1091–1104.

    Article  Google Scholar 

  • Watanabe, Y. W., T. Ono and A. Shimamoto (2000): Increase in the uptake rate of oceanic anthropogenic carbon in the North Pacific determined by CFC age. Mar. Chem., 72, 295–315.

    Article  Google Scholar 

  • Watanabe, Y. W., T. Ono, A. Shimamoto, T. Sugimoto, M. Wakita and S. Watanabe (2001): Possibility of a reduction in the formation rate of the subsurface water in the North Pacific. Geophys. Res. Lett., 28, 3285–3288.

    Article  Google Scholar 

  • Watson, A. J. and M. I. Liddicoat (1985): Recent history of atmospheric tracer gas concentrations deduced from measurements in the deep sea: application to sulfur hexafluoride and carbon tetrachloride. Atmos. Environ., 19, 1477–1484.

    Article  Google Scholar 

  • Watson, A. J., R. C. Upstill-Goddard and P. S. Liss (1991): Airsea gas exchange in rough and stormy seas measured by a dual-tracer technique. Nature, 349, 145–147.

    Article  Google Scholar 

  • Wisegarver, D. P. and R. H. Gammon (1988): A new transient tracer: measured vertical distribution of F-113 in the North Pacific subarctic gyre. Geophys. Res. Lett., 15, 188–191.

    Google Scholar 

  • WOCE (1999): WOCE Hydrographic Program Office. http:// whpo.ucsd.edu/index.htm

  • Yamanaka, G., Y. Kitamura and M. Endo (1998): Formation of North Pacific Intermediate Water in Meteorological Research Institute ocean general circulation model 2: transient tracer experiments. J. Geophys. Res., 103, 30905–30921.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, Y.W., Shimamoto, A. & Ono, T. Comparison of Time-Dependent Tracer Ages in the Western North Pacific: Oceanic Background Levels of (SF6, CFC-11, CFC-12 and CFC-113. Journal of Oceanography 59, 719–729 (2003). https://doi.org/10.1023/B:JOCE.0000009600.12070.1a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCE.0000009600.12070.1a

Navigation