Skip to main content
Log in

Identification and Subcellular Localization of Neuronal Calcium Sensor-1 (NCS-1) in Human Neutrophils and HL-60 Cells

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Secretion in neutrophils is thought to be regulated in different ways for the different granule types. Specific granules are endowed with proteins which are related to docking and fusion events and are absent on azurophilic granules. Furthermore, even if secretion of content from all neutrophil granules is a Ca2 +-dependent process, a higher concentration of cytosolic calcium is required for azurophilic than for specific granule secretion. In this paper we show that human neutrophils and promyelocitic cells express neuronal calcium sensor-1 (NCS-1), a calcium binding protein involved in exocytosis in various cell types. Both mRNA and protein were found in mature cells and precursors. NCS-1 is shown to be mainly associated with azurophilic granules and, therefore could play an instrumental role in the calcium-dependent secretion of azurophilic granules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berton, G. 1999. Degranulation. In Inflammation: Basic Principles and Clinical Correlates, J. I. Gallin and R. Snyderman, eds. Lippincott Williams and Wilkins, Philadelphia, pp. 703–719.

    Google Scholar 

  2. Borregaard, N. and J. B. Cowland. 1997. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89:3503–3521.

    Google Scholar 

  3. Weiss, S. J. 1989. Tissue destruction by neutrophils. New Eng. J. Med. 320:365–376.

    Google Scholar 

  4. Henson, P. M. and R. B. Johnston. 1987. Tissue injury in inflammation. J. Clin. Invest. 79:669–674.

    Google Scholar 

  5. Fittschen, C. and P. M. Henson. 1994. Linkage of azurophilic granule secretion in neutrophils to chloride ion transport and endosomal transcytosis. J. Clin. Invest. 93:247–255.

    Google Scholar 

  6. Romeo, D., G. Zabucchi, N. Miani, and F. Rossi. 1975. Ionic movement across leukocyte plasma membrane and excitation of their metabolism. Nature 253:542–544.

    Google Scholar 

  7. Weissmann, G., J. E. Smolen, and H. M. Korchak. 1980. Release of inflammatory mediators from stimulated neutrophils. New Eng. J. Med. 303:27–34.

    Google Scholar 

  8. Sengelov, H., L. Kjeldsen, and N. Borregaard. 1993. Control of exocytosis in early neutrophil activation. J. Immunol. 150:1535–1543.

    Google Scholar 

  9. Sudhof, T. C., P. De Camilli, H. Niemann, and R. Jahn. 1993. Membrane fusion machinary: Insight from synaptic proteins. Cell 75: 1–4.

    Google Scholar 

  10. Mayer, A. 1999. Intracellular membrane fusion: SNAREs only? Curr. Opin. Cell Biol. 11:447–452.

    Google Scholar 

  11. Ernst, J. D. 1991. Annexin III translocates to the periphagosomal region when neutrophils ingest opsonized yeast. J. Immunol. 146:3110–3114.

    Google Scholar 

  12. Francis, J. W., K. J. Balazovich, J. E. Smolen, D. J. Margolis, and L. A. Boxer. 1992. Human neutrophil annexin I promotes granule aggregation and modulates Ca2+ dependent membrane fusion. J. Clin. Invest. 90:537–544.

    Google Scholar 

  13. Le Cabec, V. and I. Maridonneau-Parini. 1994. Annexin 3 is associated with cytoplasmic granules in neutrophils and monocytes and translocates to the plasma membrane in activated cells. Biochem. J. 303:481–487.

    Google Scholar 

  14. Rosales, J. L. and J. D. Ernst. 1997. Calcium-dependent neutrophil secretion: Characterization and regulation by annexins. J. Immunol. 159:6195–6202.

    Google Scholar 

  15. Brummel, J. H., A. Volchuk, H. Sengelov, N. Borreegard, A. N. Cieutat, D. F. Bainton, S. Grinstein, and A. Klip. 1995. Subcellular distribution of docking/fusion proteins in neutrophils, secretory cells with multiple exocytotic compartments. J. Immunol. 155:5750–5759.

    Google Scholar 

  16. Martin-Martin, B., S. M. Nabokina, J. Blasi, P. A. Lazo, and F. Mollinedo. 2000. Involvement of SNAP-23 and syntaxin 6 in human neutrophil exocytosis. Blood 96:2574–2583.

    Google Scholar 

  17. Smolen, J. E., R. J. Hessler, W. M. Nauseef, M. Goedken, and Y. Joe. 2001. Identification and cloning of the SNARE proteins VAMP-2 and syntaxin-4 from HL-60 cells and human neutrophils. Inflammation 25:255–265.

    Google Scholar 

  18. Mollinedo, F. and P. A. Lazo. 1997. Identification of two isoforms of the vesicle-membrane fusion protein SNAP-23 in human neutrophils and HL-60 cells. Biochem. Biophys. Res. Commun. 231:808–812.

    Google Scholar 

  19. Nabokina, S., G. Egea, J. Blasi, and F. Mollinedo. 1997. Intracellular location of SNAP-25 in human neutrophils. Biochem. Biophys. Res. Commun. 239: 592–597.

    Google Scholar 

  20. Martin-Martin, B., S. M. Nabokina, P. A. Lazo, and F. Mollinedo. 1999. Co-expression of several human syntaxin genes in neutrophils and differentiating HL-60 cells: Variant isoforms and detection of syntaxin 1. J. Leukoc. Biol. 65:397–406.

    Google Scholar 

  21. Hackam, D. J., O. D. Rotstein, M. K. Bennet, A. Klip, S. Grinstein, and M. F. Manolson. 1996. Characterization and subcellular localization of target membrane soluble NSF attachment protein receptors (t-SNARE) in macrophages. J. Immunol. 156:4377–4383.

    Google Scholar 

  22. Allen, L. A., C. Yang, and J. E. Pessin. 2002. Rate and extent of phagocytosis in macrophages lacking vamp 3. J. Leukoc. Biol. 72:217–221.

    Google Scholar 

  23. McFerran, B. W., J. L. Weiss, and R. D. Burgoine. 1999. Neuronal calcium sensor 1 characterization of the myristoilated protein, its cellular effects in permeabilized adrenal chromaffin cells, Ca2+-independent membrane association, and interaction with binding proteins, suggesting a role in rapid Ca2+ signal transduction. J. Biol. Chem. 274:30258–30265.

    Google Scholar 

  24. Schaad, N. C., E. De Castro, S. Nef, S. Hegi, R. Hinrichsen, M. E. Martone, M. H. Ellismann, R. Sikkink, F. Rusnak, J. Sygush, and P. Nef. 1996. Direct modulation of calmodulin targets by the neuronal calcium sensor NCS-1. Proc. Natl. Acad. Sci. U.S.A. 93:9253–9258.

    Google Scholar 

  25. Braunewell, K. H. and E. D. Gundelfinger. 1999. Intracellular neuronal calcium sensor proteins: A family of EF-hand calcium-binding proteins in search of a function. Cell Tissue Res. 295:1–12.

    Google Scholar 

  26. Nef, S., H. Fiumelli, E. De Castro, M. B. Raes, and P. Nef. 1995. Identification of neuronal calcium sensor (NCS-1) possibly involved in the regulation of receptor phosphorylation. J. Recept. Signal Trans. Res. 15:365–378.

    Google Scholar 

  27. Weiss, J. L., D. A. Archer and R. D. Burgoyne, 2000. Neuronal Ca2+ Sensor-1/frequenin functions in an autocrine pathway regulating Ca2+ channels in bovine adrenal chromaffin cells. J. Biol. Chem. 215:10082–10087.

    Google Scholar 

  28. Olafsson, P., T. Wang, and B. Lu. 1995. Molecular cloning and functional characterization of the Xenopus Ca2+-binding protein frequenin. Proc. Natl. Acad. Sci. U.S.A. 92:8001–8005.

    Google Scholar 

  29. Martone, M. E., V. M. Edelmann, M. H. Ellisman, and P. Nef. 1999. Cellular and subcellular distribution of the calcium-binding protein NCS-1, in the central nervous system of the rat. Cell Tissue Res. 295:395–407.

    Google Scholar 

  30. Werle, M., J. Roder, and A. Jeromin. 2000. Expression of frequenin at the frog (Rana) neuromuscular junction. Neurosci. Lett. 284:33–36.

    Google Scholar 

  31. Olaffson, P., H. D. Soares, K. H. Herzog, T. Wang, J. I. Morgan, and B. Lu. 1997. The Ca2+ binding protein, frequenin is a nervous system-specific protein in mouse preferentially localized in neuritis. Brain Res. Mol. Brain Res. 44:73–82.

    Google Scholar 

  32. Angaut-Petit, D., P. Toth, O. Rogero, L. Faille, F. J. Tejedor, and A. Ferrus. 1998. Enhanced neurotransmitter release is associated with reduction of neuronal braching in a Drosophila mutant overexpressin frequenin. Eur. J. Neurosci. 10:423–434.

    Google Scholar 

  33. Reynolds, A. J., I. A. Hendry, and S. E. Bartlett. 2000. Axonal transport of neuronal calcium sensor-1 and phosphatidylinositol 4 kinase ß in the adult rat sciatic nerve. Neuroreport 11:1453–1457.

    Google Scholar 

  34. Chen, C., L. Yu, P. Zhang, J. Jiang, Y. Zhang, X. Chen, Q. Wu, Q. Wu, and S. Zhao. 2002. Human neuronal calcium sensor-1 shows the highest expression level in cerebral cortex. Neurosci. Lett. 319:67–70.

    Google Scholar 

  35. Pongs, O., J. Lindemeier, X. R. Zhu, T. Theil, D. Endelkamp, I. Krah-Jentgens, H. G. Lambrecht, K. W. Koch, J. Schwemer, R. Rivosecchi, A. Mallart, J. Galceran, I. Canal, J. A. Barbas, and A. Ferrus. 1993. Frequenin, a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron 11:15–28.

    Google Scholar 

  36. Tsujimoto, T., A. Jeromin, N. Saitoh, J. C. Roder, and T. Takahashi. 2002. Neuronal calcium sensor 1 and activity-dependent facilitation of P/Q-type caiclum currents at presynaptic nerve terminals. Science 295:2276–2279.

    Google Scholar 

  37. McFerran, B. W., M. E. Graham, and R. D. Burgoyne. 1998. Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J. Biol. Chem. 273:22768–22772.

    Google Scholar 

  38. Koizumi, S., P. Rosa, G. B. Willars, R. A. Challiss, E. Taverna, M. Francolini, M. D. Bootman, P. Lipp, K. Inoue, J. Roder, and A. Jeromin. 2002. Mechanisms underlying the neuronal calcium sensor-1-evoked enhancement of exocytosis in PC12 cells. J. Biol. Chem. 2:30315–30324.

    Google Scholar 

  39. Weisz, O. A., G. A. Gibson, S. M. Leung, J. Roder, and A. Jeromin. 2000. Overexpression of frequenin, a modulator of phosphatidylinositol 4-kinase, inhibits biosynthetic delivery of an apical protein in polarized Madin–Darby Canine Kidney Cells. J. Biol. Chem. 275: 24341–24347.

    Google Scholar 

  40. Mora, S., P. L. Durham, J. R. Smith, A. F. Russo, A. Jeromin, and J. E. Pessin. 2002. NCS-1 inhibits insulin-stimulated GLUT4 translocation in 3T3L1 adipocytes through a phosphatidylinositol 4-kinase-dependent pathway. J. Biol. Chem. 277:27494–27500.

    Google Scholar 

  41. Hendricks, K. B., B. Q. Wang, E. A. Schnieders, and J. Thorner. 1999. Yeast homolouge of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat. Cell Biol. 1: 234–241.

    Google Scholar 

  42. Zhao, X., P. Varnai, G. Tuymetova, A. Balla, Z. E. Toth, C. Oker-Blom, J. Roder, A. Jeromin, and T. Balla. 2001. Interaction of neuronal calcium sensor-1 (NCS-1) with phosphatidylinositol 4-kinase beta stimulates lipid kinase activity and affects membrane trafficking in COS-7 cells. J. Biol. Chem. 276:40183–40189.

    Google Scholar 

  43. Chen, X. L., Z. G. Zhong, S. Yokoyama, C. Bark, B. Meister, P. O. Berggren, J. Roder, H. Higashida, and A. Jeromin. 2001. Overexpression of rat neuronal calcium sensor-1 in rodent NG 108–15 cells enhances synapse formation and transmission. J. Physiol. 532:649–659.

    Google Scholar 

  44. Reynolds, A. J., S. E. Bartlett, and C. Morgans. 2001. The distribution of neuronal calcium sensor-1 protein in the developing and adult rat retina. Neuroreport 12:725–728.

    Google Scholar 

  45. Bourne, Y., J. Dannenberg, V. Pollmann, P. Marchot, and O. Pongs. 2001. Immunocytochemical localization and crystal structure of human frequenin (neuronal calcium sensor 1). J. Biol. Chem. 276:11949–11955.

    Google Scholar 

  46. Fisher, J. R., Y. Sharma, S. Iuliano, R. A. Piccioti, D. Krylov, J. Hurley, J. Roder, and A. Jeromin. 2000. Purification of myristoylated and nonmyristoylated neuronal calcium sensor-1 using single-step hydrophobic interaction chromatography. Protein Expr. Purif. 20:66–72.

    Google Scholar 

  47. Zabucchi, G., R. Menegazzi, L. Roncelli, P. Bertoncin, F. Tedesco, and P. Patriarca. 1990. Protective and inactivating effects of neutrophil myeloperoxidase on C1q activity. Inflammation 14:41–53.

    Google Scholar 

  48. Collins, S. J., R. C. Gallo, and R. T. Gallagher. 1977. Continuos growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature 270:347–349.

    Google Scholar 

  49. Breitman, T. R., S. E. Selonick, and S. J. Collins. 1980. Induction of differentiation of the human promyelocytic leukaemia cell line (HL-60) by retinoic acid. Proc. Natl. Acad. Sci. U.S.A. 77:2936–2940.

    Google Scholar 

  50. Zabucchi, G., M. R. Soranzo, R. Menegazzi, M. Vecchio, A. Knowles, C. Piccinini, P. Spessotto, and P. Patriarca. 1992. Eosinophil peroxidase deficiency: Morphological and immunocytochemical studies of the eosinophils-specific granules. Blood 80:2903–2910.

    Google Scholar 

  51. Vita, F., M. R. Soranzo, V. Borelli, P. Bertoncin, and G. Zabucchi. 1996. Subcellular localization of the small GTPase Rab5a in resting and stimulated human neutrophils. Exp. Cell Res. 227:367–373.

    Google Scholar 

  52. Schneider, C., R. A. Newman, D. R. Sutherland, U. Asser, and M. F. Greaves. 1982. A one-step purification of membrane proteins using a high efficiency immunomatrix. J. Biol. Chem. 257:10766–10769.

    Google Scholar 

  53. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    Google Scholar 

  54. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of micrograms quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Google Scholar 

  55. Nauseef, W. M. and R. A. Clark. 1986. Separation and analysis of subcellular organelles in a human promyelocytic leukemia cell line, HL-60: Application to the study of myeloid lysosomal enzyme synthesis and processing. Blood 68:442–449.

    Google Scholar 

  56. Zerial, M. and H. Stenmark. 1993. Rab GTPases in vesicular transport. Curr. Opin. Cell. Bio. 5:613–620.

    Google Scholar 

  57. Bean, A. J., R. Seifert, Y. A. Chen, R. Sacks, and R. H. Scheller. 1997. HRS-2 is an ATPase implicated in calcium-regulated secretion. Nature 385:826–829.

    Google Scholar 

  58. Littleton, J. K., M. Stern, K. Schulze, M. Perni, and H. J. Bellen. 1993. Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca2+-activated neurotransmitter release. Cell 74:1125–1134.

    Google Scholar 

  59. Edwardson, J. M., S. An, and R. Jahn. 1997. The secretory granule protein syncollin binds to syntaxin in a Ca2+-sensitive manner. Cell 90:325–333.

    Google Scholar 

  60. Burgoyne, R. D. 1990. Secretory vesicle-associated proteins and their role in exocytosis. Ann. Rev. Physiol. 52:647–659.

    Google Scholar 

  61. Sjölin, C., O. Stendahl, and C. Dahlgren. 1994. Calcium-induced translocation of annexins to subcellular organelles of human neutrophils. Biochem. J. 300:325–330.

    Google Scholar 

  62. Movitz, C., C. Sjölin, and C. Dahlgren. 1999. Cleavage of annexin I in human neutrophils is mediated by a membrane-localized metalloprotease. Biochim. Biophys. Acta 1416:101–108.

    Google Scholar 

  63. Sjölin, C. and C. Dahlgren. 1996. Diverse effects of different neutrophil organelles on truncation and membrane-binding characteristics on annexin I. Biochim. Biophys. Acta 1281:227–234.

    Google Scholar 

  64. Sjölin, C., C. Movitz, H. Lundqvist, and C. Dahlgren. 1997. Translocation of annexin XI to neutrophil subcellular organelles. Biochim. Biophys. Acta 1326:149–156.

    Google Scholar 

  65. Perskvist, N., K. Roberg, A. Kulyte, and O. Stensdahl. 2002. Rab5a GTPase regulates fusion between pathogen-containing phagosomes and cytoplasmic organelles in human neutrophils. J. Cell. Sci. 115:1321–1330.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano Zabucchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brochetta, C., Perrotta, M.G., Jeromin, A. et al. Identification and Subcellular Localization of Neuronal Calcium Sensor-1 (NCS-1) in Human Neutrophils and HL-60 Cells. Inflammation 27, 361–372 (2003). https://doi.org/10.1023/B:IFLA.0000006704.13043.51

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IFLA.0000006704.13043.51

Navigation