Skip to main content
Log in

Phytoplankton size structure stability in a meso-eutrophic subtropical lake

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The aim of the present study was to analyze seasonal and inter-annual variability, and examine the stability of several parameters describing the size structure of the phytoplankton assemblage of Lake Kinneret (Israel). Phytoplankton biomass size spectrum (BSS) patterns were analyzed using cell-volume data based on microscopic counts of samples collected biweekly over 4 years (1996–1999). A typical pattern of Lake Kinneret phytoplankton BSS emerged, as being quasi-stable in spite of unprecedented man-induced lowering of the lake’s water levels during those years, atypical phytoplankton biomass dynamics, and extreme inter-annual variations in phytoplankton species composition. The present study included all phytoplankton greater than ca. 2 μm diameter, which comprise most of the lake’s autotrophic biomass, and phytoplankton alone. Statistical descriptors of separate size classes elucidate two zones of pronounced variability within Kinneret BSS and a zone of stability near its center. The phytoplankton biomass variability is produced mainly by two bloom zones, at relatively large cell size classes (V=2048–4096 and V=65 500–131 000 μm3), corresponding with proliferation of the bloom-forming species Aulacoseira granulata and Peridinium gatunense, respectively, while the stability zone at the center of the BSS, essentially a ‘nanoplankton plateau’, corresponds with a diverse assemblage of nanoplanktonic species, of different taxonomic composition at different times. Statistical parameters of BSS approximation provide a tool for the quantitative estimation of the stability/variability of whole phytoplankton assemblages. According to these parameters, Kinneret BSS is comparable to BSS of eutrophic lakes of Canada and Spain but differs from the more stable BSS typical of oligotrophic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez-Cobelas, M. & C. Rojo, 2000. Ecological goal functions and plankton communities in lakes. Journal of Plankton Research 22: 729–748.

    Article  Google Scholar 

  • Bailey-Watts, A. E. 1986. Seasonal variation in size spectra of phytoplankton assemblages in Loch Leven, Scotland. Hydrobiologia 138: 25–42.

    Article  Google Scholar 

  • Banse, K., 1976. Rates of growth, respiration, and photosynthesis of unicellular algae as related to cell size.-A review. Journal of Phycology 12: 135–140.

    Google Scholar 

  • Begon, M., J. L. Harper & C. R. Townsend, 1996. Ecology: Individuals, Populations and Communities. 3rd ed. Blackwell, London.

    Google Scholar 

  • Bell, T. & J. Kalff, 2001. The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnology & Oceanography 46: 1243–1248.

    Article  Google Scholar 

  • Berman, T., U. Pollingher & T. Zohary, 1998. A Short history of stability and change in phytoplankton populations in Lake Kinneret. Israeli Journal of Plant Science 47: 73–80.

    Google Scholar 

  • Cavender-Bares, K.K., A. Rinaldo & S. W. Chisholm, 2001. Microbial size spectra from natural and nutrient enriched ecosystems. Limnology & Oceanography 46: 778–789.

    Article  Google Scholar 

  • Chisholm, S.W., 1992. Phytoplankton size. In Falkowski, P. G. & A. D. Woodhead (eds), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York (N.Y.): 213–237.

    Google Scholar 

  • Chislenko, L. L., 1981. Struktura fauny i flory v svyazi s razmerami organizmov. Moscow Univ., Moscow, 208 pp. [Structure of fauna and flora as related to the sizes of organisms] (in Russian).

    Google Scholar 

  • Ciotti, M., M. R. Lewis & J. J. Cullen, 2002. Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnology & Oceanography 47: 404–417.

    Article  CAS  Google Scholar 

  • Cottingham, K. L., 1999. Nutrients and zooplankton as multiple stressors of phytoplankton communities: Evidence from size structure. Limnology & Oceanography 44: 810–827.

    Google Scholar 

  • Cózar, A., C. M. García, & J. A. Gálvez, 2003. Analysis of plankton size spectra irregularities in two subtropical shallow lakes (Esteros del Iberá, Argentina). Canadian Journal of Fisheries & Aquatic Sciences 60: 411–420.

    Article  Google Scholar 

  • Cyr, H. & R. H. Peters, 1996. Biomass-size spectra and the prediction of fish biomass in lakes. Canadian Journal of Fisheries & Aquatic Sciences 53: 994–1006.

    Article  Google Scholar 

  • Gaedke, U., 1992. The size distribution of plankton biomass in a large lake and its seasonal variability. Limnology & Oceanography 37: 1202–1220.

    Google Scholar 

  • Gasol, J. M., R. Guerrero & C. Pedrós-Alió, 1991. Seasonal variation in size structure and prokaryotic dominance in sulfurous Lake Cisó. Limnology & Oceanography 36: 860–872.

    Google Scholar 

  • Gin, K. Y. H., S. W. Chisholm & R. J. Olson, 1999. Seasonal and depth variation in microbial size spectra at the Bermuda Atlantic time series station. Deep-Sea Research I, 46: 1221–1245.

    Article  CAS  Google Scholar 

  • Hambright, K. D., T. Zohary & W. Eckert, 1997. Potential influence of low water levels on Lake Kinneret: re-appraisal and modification of early hypotheses. Limnologica 27: 149–155.

    CAS  Google Scholar 

  • Havelicek, T. D. & S. R. Carpenter, 2001. Pelagic species size distributions in lakes: are they discontinuous? Limnology & Oceanography 46: 1021–1033.

    Article  Google Scholar 

  • Havens, K. E., 2001. Complex analyses of plankton structure and function. The Scientific World 1: 119–132.

    CAS  Google Scholar 

  • Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Holling, C. S. (ed.), 1978. Adaptive environmental assessment and Management. Wiley, NY, 398 pp.

    Google Scholar 

  • Holling, C. S., 1992. Cross-scale morphology, geometry and dynamics of ecosystems. Ecological Monographs 62: 447–502.

    Article  Google Scholar 

  • Jeppesen, E., T. L. Lauridsen, S. F. Mitchell & C. W. Burns, 1997. Do planktivorous fish structure the zooplankton communities in New Zealand lakes? New Zealand Journal of Marine Freshwater Research 31: 163–173.

    Article  Google Scholar 

  • Kamenir, Y. G. & K. M. Khailov, 1987. Metabolic characteristics and total surface area of living matter of the ocean: A comparison of size spectra. Oceanology 27: 492–496.

    Google Scholar 

  • Kamenir, Y., P. Walline, B. Shteinman, M. Gophen & T. Bergstein Ben-Dan, 1998. Size structure of aquatic communities: Lake Kinneret case. Hydrobiologia 380: 43–47.

    Article  Google Scholar 

  • Kamenir, Y., B. Shteinman & P. Walline, 1999. Influence of basin scale on structure of natural aquatic communities. Hydrobiologia 416: 33–40.

    Article  Google Scholar 

  • Kerr, S. R., 1974. Theory of size distribution in ecological communities. Journal of Fisheries Research Board Canada 31: 1859–1862.

    Google Scholar 

  • Kiorboe, T., 1993. Turbulence, phytoplankton cell size and the structure of pelagic food webs. Advances in Marine Biology 29: 1–72.

    Article  Google Scholar 

  • Li, W. K. W., 2002. Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature 419: 154–157.

    Article  CAS  PubMed  Google Scholar 

  • Li, W. K. W. & W. G. Harrison, 2001. Chlorophyll, bacteria and picophytoplankton in ecological provinces of the North Atlantic. Deep-Sea Research II 48: 2271–2293.

    Article  Google Scholar 

  • Lund, J.W.G., C. Kipling, & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Morin, A., N. Bourassa & A. Cattaneo, 2001. Use of size spectra and empirical models to evaluate trophic relationships in streams. Limnology & Oceanography 46: 935–940.

    Article  Google Scholar 

  • Naselli-Flores, L., J. Padis’ak, M. T. Dokulil & I. Chorus, (in press) 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 00: 1–9.

    Google Scholar 

  • Nishri, A., T. Zohary, M. Gophen & D.Wynne, 1998. Lake Kinneret dissolved oxygen regime reflects long term changes in ecosystem functioning. Biogeochemistry 42: 253–283.

    Article  CAS  Google Scholar 

  • Norussis, M. J., 1998. SPSS 9.0 Guide to Data Analysis. Prentice Hall, Upper Saddle River (N.J.), 577 pp.

    Google Scholar 

  • Odum, E. P., 1971. Fundamentals of Ecology. Saunders, Philadelphia, 574 pp.

    Google Scholar 

  • Peters, R. H., 1983. The Ecological Implications of Body Size. Cambridge Univ. Press, Cambridge, 329 pp.

    Google Scholar 

  • Peters, R. 1986. The role of prediction in limnology. Limnology & Oceanography 31: 1143–1159.

    CAS  Google Scholar 

  • Platt, T. & K. Denman, 1978. The structure of pelagic ecosystems. Rapports et Procès-Verbaux des Réunions du Conseil International pour l’Exploration de la Mer 173: 60–65.

    Google Scholar 

  • Pollingher, U., 1986. Phytoplankton periodicity in a subtropical lake (Lake Kinneret, Israel). Hydrobiologia 138: 127–138.

    Article  Google Scholar 

  • Pollingher, U. & C. Serruya, 1976. Phased division of Peridinium cinctum fa. westii (Dinophyceae) and development of the Lake Kinneret, Israel bloom. Journal of Phycology 12: 162–170.

    Google Scholar 

  • Pollingher, U., O. Hadas, Y. Z. Yacobi, T. Zohary & T. Berman, 1998. Aphanizomenon ovalisporum (Forti) in Lake Kinneret (Israel). Journal of Plankton Research 20: 1321–1339.

    Article  Google Scholar 

  • Quintana, X. D., F. A. Comin & R. Moreno-Amich, 2002. Biomasssize spectra in aquatic communities in shallow fluctuating Mediterranean salt marshes (Emporda wetlands, NE Spain). Journal of Plankton Research 24: 1149–1161.

    Article  Google Scholar 

  • Reynolds, C. S. 2002. On the interannual variability in phytoplankton production in freshwaters. In Williams, P. J. L. B., D. N. Thomas & C. S. Reynolds (eds), Phytoplankton Productivity; Carbon Assimilation in marine and freshwater ecosystems. Blackwell Science: 187-221.

  • Rodriguez, J. & M. M. Mullin, 1986. Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnology & Oceanography 31: 361–370.

    Google Scholar 

  • Rojo, C. & J. Rodríguez. 1994. Seasonal variability of phytoplankton size structure in a hypertrophic lake. Journal of Plankton Research 16: 317–335.

    Article  Google Scholar 

  • Rojo, C. & M. Alvarez-Cobelas, 2003 (in press). Are there steady state phytoplankton assemblages in the field? Hydrobiologia 00: 1–10.

    Google Scholar 

  • Scheffer, M., S. Rinaldi, J. Huisman & F. J. Weissing, 2003. Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491: 9–18.

    Article  Google Scholar 

  • Schwinghamer, P., 1981. Characteristic size distribution of integral benthic communities. Canadian Journal of Fisheries & Aquatic Sciences 38: 1255–1263.

    Article  Google Scholar 

  • Serruya, C. (ed.), 1978. The Kinneret. Monographia Biologica. Dr W. Junk Publishers, The Hague, 455 pp.

    Google Scholar 

  • Sheldon, R.W., A. Prakash & W. H. Sutcliffe, 1972. The size distribution of particles in the ocean. Limnology & Oceanography 17: 327–340.

    Article  Google Scholar 

  • Sieburth, J. M., V. Smetacek & J. Lenz, 1978. Pelagic ecosystem structure: Heterotrophic compartments and their relationship to plankton size fractions. Limnology & Oceanography 23: 1256–1263.

    Article  Google Scholar 

  • Sin, Y., R. L. Wetzel & I. C. Anderson, 2000. Seasonal variations of size-fractionated phytoplankton along the salinity gradient. Journal of Plankton Research 22: 1945–1960.

    Article  Google Scholar 

  • Sprules, W. G. & M. Munawar, 1986. Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Canadian Journal of Fisheries & Aquatic Sciences 43: 1789–1794

    Article  Google Scholar 

  • Sprules, W. G. & A. P. Goyke, 1994. Size-based structure and production in the pelagia of Lakes Ontario and Michigan. Canadian Journal of Fisheries & Aquatic Sciences 51: 2603–2611.

    Article  Google Scholar 

  • Thiebaux, M. L. & L. M. Dickie, 1993. Structure of the body-size spectrum of the biomass in aquatic ecosystems: a consequence of allometry in predator-prey interactions. Canadian Journal of Fisheries & Aquatic Sciences 50: 1308–1317.

    Article  Google Scholar 

  • Thingstad, T. F. & E. Sakshaug, 1990. Control of phytoplankton growth in nutrient recycling ecosystems. Theory and terminology. Marine Ecology Progress Series 63: 261–272.

    Article  Google Scholar 

  • Tittel, J., B. Zippel, W. Geller & J. Seeger, 1998. Relationships between plankton community structure and plankton size distribution in lakes of northern Germany. Limnology & Oceanography 43: 1119–1132.

    Google Scholar 

  • Turkia, J. & L. Lepisto, 1999. Size variations of planktonic Aulacoseira Thwaites (Diatomae) in water and in sediment from Finnish lakes of varying trophic state. Journal of Plankton Research 21: 757–770.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkömmung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Vereinigung fuer Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vidondo, B., Y. T. Prairie, J. M. Blanco & C. M. Duarte, 1997. Some aspects of the analysis of size spectra in aquatic ecology. Limnology & Oceanography 42: 184–192.

    Google Scholar 

  • West, G. B., J. H. Brown & B. J. Enquist, 1997. A general model for the origin of allometric scaling laws in biology. Science 276: 122–126.

    Article  CAS  PubMed  Google Scholar 

  • Wetzel, R. G. 2001. Limnology: lake and river ecosystems. 3rd Edition. NY, Academic Press.

    Google Scholar 

  • Yamaguchi, A., Y. Watanabe, H. Ishida, T. Harimoto, K. Furusawa, S. Suzuki., J. Ishizaka, T. Ikeda & M. Takahashi, 2002. Structure and size distribution of plankton communities down to the greater depths in the western North Pacific Ocean. Deep-Sea Research II 49: 5513–5529.

    Article  CAS  Google Scholar 

  • Zohary, T., 2002. The Kinneret: not only the quantity, now also water quality. Water and Irrigation 430: 8–11, 13-15 (in Hebrew).

    Google Scholar 

  • Zohary, T., U. Pollingher, O. Hadas & K. D. Hambright, 1998. Bloom dynamics and sedimentation of Peridinium gatunense in Lake Kinneret. Limnology & Oceanography 43: 175–186.

    CAS  Google Scholar 

  • Zohary, T., H. Güde, U. Pollingher, B. Kaplan, R. Pinkas & O. Hadas, 2000. The role of nutrients in decomposition of a thecate dinoflagellate. Limnology & Oceanography 45: 123–130.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kamenir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamenir, Y., Dubinsky, Z. & Zohary, T. Phytoplankton size structure stability in a meso-eutrophic subtropical lake. Hydrobiologia 520, 89–104 (2004). https://doi.org/10.1023/B:HYDR.0000027729.53348.c7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000027729.53348.c7

Navigation