Skip to main content
Log in

Cytological damage to the red alga Griffithsia pacifica from ultraviolet radiation

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Continuous exposure for 7–10 days to 60% of ambient levels (sea level at mid-day in December) of UV-A and UV-B radiation caused cytological damage to regenerating fragments of Griffithsia pacifica under laboratory conditions. There was high mortality of individual cells and entire fragments in UV treated filaments. Rhizoid initiation was slower and rhizoids grew more slowly following UV treatment. After 7 days, UV radiated thalli showed chloroplast and nuclear degeneration. In addition, filaments tended to disarticulate so that single or groups of apparently healthy cells were common in the medium. These data suggest that the subtidal habitat of G. pacifica is based in part on lack of tolerance to UV radiation, and that UV protection mechanisms are not inducible or insufficient to prevent the accumulation of damage in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Caldwell, M. M., A. H. Teramura, M. Tevini, J. F. Bornman, L. O. Björn & G. Kulandaivelu, 1995. Effects of increased solar ultraviolet radiation on terrestrial plants. Ambio 24: 166–173.

    Google Scholar 

  • Dring, M. J., A. Wagner, J. Boeskov & K. Lüning, 1996. Sensitivity of intertidal and subtidal red algae to UVA and UVB radiation, as monitored by chlorophyll fluorescence measurements: influence of collection depth and season, and length of irradiation. Eur. J. Phycol. 31: 293–302.

    Google Scholar 

  • Franklin, L. A. & R. M. Forster, 1997. The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur. J. Phycol. 32: 207–232.

    Google Scholar 

  • Franklin, L. A., R. M. Forster & K. Lüning, 1998. UVB radiation and macroalgae: present effects and future directions. Eur. Soc. Photobiol., Proc. 1998: 1–12.

    Google Scholar 

  • Garbary, D. J. & A. R. McDonald, 1998. Molecules, organelles and cells: fluorescence microscopy and red algal development. In Cooksey, K. E. (ed.), Molecular Approaches to the Study of the Ocean. Chapman & Hall, London: 409–422.

    Google Scholar 

  • Garbary, D. J., A. R. McDonald & J. G. Duckett, 1992. Visualization of the cytoskeleton in red algae using fluorescent labelling. New Phytol. 120: 435–444.

    Google Scholar 

  • Guiry, M. D. & E. Cunningham, 1984. Photoperiodic and temperature responses in the reduction of north-eastern Atlantic Gigartina acicularis (Rhodophyta: Gigartinales). Phycologia 23: 357–367.

    Google Scholar 

  • Häder, D.-P. & F. L. Figueroa, 1997. Photoecophysiology of marine macroalgae. Photochem. Photobiol. 66: 1–14.

    Google Scholar 

  • Heath, I. B., 1990. Tip Growth in Plant and Fungal Cells. Academic Press, San Diego.

    Google Scholar 

  • Karentz, D., 1994. Ultraviolet tolerance mechanisms in Antarctic marine organisms. Ant. Res. Ser. 62: 93–110.

    Google Scholar 

  • Karentz, D., F. S. McEuen, M. C. Land & W. C. Dunlap, 1991. Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Mar. Biol. 108: 157–166.

    Google Scholar 

  • Karsten, U., L. A. Franklin, K. Lüning & C. Wiencke, 1998. Natural ultraviolet-radiation and photosynthetically active radiation induce formation of mycosporine-like amino-acids in the marine macroalga Chondrus-crispus (Rhodophyta). Planta 205: 257–262.

    Google Scholar 

  • Koslowsky, D. J. & S. D. Waaland, 1984. Cytoplasmic incompatibility following somatic cell fusion in Griffithsia pacifica Kylin, a red alga. Protoplasma 123: 8–17.

    Google Scholar 

  • Koslowsky, D. J. & S. D. Waaland, 1987. Ultrastructure of selective chloroplast destruction after somatic cell fusion in Griffithsia pacifica Kylin (Rhodophyta). J. Phycol. 23: 638–648.

    Google Scholar 

  • Madronich, S., R. L. McKenzie, M. Caldwell & L. O. Björn, 1995. Changes in ultraviolet radiation reaching the earth surface. Ambio 24: 143–152.

    Google Scholar 

  • McKerracher, L. J. & I. B. Heath, 1986. Fungal nuclear behavior analysed by ultraviolet microbeam irradiation. Cell Motil. Cytoskel. 6: 35–47.

    Google Scholar 

  • Pakker, H. & A. M. Breeman, 1997. Effects of ultraviolet-B radiation on macroalgae: DNA damage and repair. Phycologia 36 (4, supplement): 82–83.

    Google Scholar 

  • Pavia, H., G. Cervin, A. Lindgren & P. Åberg, 1997. Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar. Ecol. Prog. Ser. 157: 139–146.

    Google Scholar 

  • Russell, C. A., M. D. Guiry, A. R. McDonald & D. J. Garbary, 1996. Actin-mediated chloroplast movement in Griffithsia pacifica (Ceramiales, Rhodophyta). Phycol. Res. 44: 57–61.

    Google Scholar 

  • Xiong, F., J. Komenda, J. Kopecky & L. Nedbal, 1997. Strategies of ultraviolet-B protection in microscopic algae. Physiol. Plant. 11: 378–388.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garbary, D.J., Young Kim, K. & Hoffman, J. Cytological damage to the red alga Griffithsia pacifica from ultraviolet radiation. Hydrobiologia 512, 165–170 (2004). https://doi.org/10.1023/B:HYDR.0000020323.78605.9e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000020323.78605.9e

Navigation