Skip to main content
Log in

Effects of water level, abiotic and biotic factors on bacterioplankton abundance in lagoons of a tropical floodplain (Paraná River, Brazil)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The purpose of this paper was to assess the influence of basic limnological variables on bacterioplankton abundance in twenty lagoons in the Upper Paraná River floodplain, Brazil. Twelve abiotic (depth, total nitrogen, total phosphorus, dissolved organic carbon (DOC), water transparency, temperature, dissolved oxygen, alkalinity, pH, turbidity, electrical conductivity and total inorganic carbon), and two biotic (chlorophyll-a and rotifers abundance) limnological factors were used as independent variables to explain bacterial countings. Principal component analysis (PCA) was used to reduce the dimensionality of the abiotic data and chlorophyll-a. Subsequently, multiple regression analysis was used to examine the relationship between bacterial abundance and the principal component axes and rotifer densities. Bacterioplankton abundance fluctuated from 1.8 to 5.9 × 106 cells.ml−1 during the high water phase and from 1.4 to 4.0 × 106 cells.ml−1 during the low water phase and they were significantly higher during the former phase (t=3.06; p=0.007). Bacterial abundance was not significantly correlated with chlorophyll-a and rotifers abundance. On the other hand, it was positively correlated with principal components 1 and 2, indicating that DOC, total nitrogen and phosphorus concentration, temperature and pH are important to explain bacteria abundance. These results indicate that the input of different sources of DOC and inorganic nutrients from the floodplain into the lagoons during the high water phase is more important to explain bacterial abundance than autochthonous phytoplanktonic organic matter or predation by rotifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agostinho, A. A., S. M. Thomaz, C. V. Minte-Vera & K. O. Winemiller, 2000. Biodiversity in the high Paraná River floodplain. In Gopal, B., W. J. Junk & J. A. Davis (eds), Biodiversity in Wetlands: Assesment, Function and Conservation. Backhuys Publisher, Leiden, The Netherlands: 89-118.

    Google Scholar 

  • Anesio, A. M., P. C. Abreu & F. A. Esteves, 1997. Influence of the hydrological cycle on the bacterioplankton of an impacted clear water Amazonian Lake. Microb. Ecol. 34: 66-73.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257-263.

    Google Scholar 

  • Barreto, S. R. G., 2001. Estudo da variabilidade temporal dos parâmetros físico-químicos e dos metais na caracterização de uma lagoa de inundação na planície do Alto rio Paraná. Maringá: Universidade Estadual de Maringá: 97 pp. (PhD Dissertation).

    Google Scholar 

  • Bini, L. M., S. M. Thomaz & D. C. Souza, 2001. Species richness and â-diversity of aquatic macrophytes in the Upper Paraná River floodplain. Arch. Hydrobiol. 151: 511-525.

    Google Scholar 

  • Booth, B. C., 1993. Estimating cell concetration and biomass of autotrophic plankton using microscopy. In Kemp, P. F., B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Boca Raton, Florida: 199-205.

  • Burns, C. W. & M. Schallenberg, 2001. Short-term impacts of nutrients, Daphnia, and copepods on microbial food-webs of an oligotrophic and leutrophic lake. New Zeal. J. Mar. Fresh. 35: 695-710.

    Google Scholar 

  • Carmouze, J. P., 1994. O metabolismo dos ecossistemas aquáticos: fundamentos teóricos, métodos de estudo e análises químicas. Edgar Blucher-FAPESP, São Paulo: 253 pp.

  • Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43: 1-10.

    Google Scholar 

  • Cuffney, T. F. & J. B. Wallace, 1987. Leaf litter processing in Coastal Plain streams and floodplains of southeastern Georgia, U.S.A. Arch. Hydrobiol. Suppl. 76: 1-24.

    Google Scholar 

  • Degans, H. & L. De Meester, 2002. Top-down control of natural phyto-and bacterioplankton prey communities by Daphnia magna and by the natural zooplankton community of the hypertrophic Lake Blankaart. Hydrobiologia 479: 39-49.

    Google Scholar 

  • Fenchel, T., 1987. Ecology of protozoa. The Biology of Free-living Phagotrophic Protists. Science Tech Publishers, Madison: 197 pp.

    Google Scholar 

  • Findlay, S. & K. Howe, 1993. Bacterial-Algal relationships in streams of the hubbard brook experimental forest. Ecology 74: 2326-2336.

    Google Scholar 

  • Findlay, S., L. Carlough, M. T. Crocker, H. K. Gill, J. L. Meyer & P. J. Smith, 1986. Bacterial growth on macrophyte leachate and fate of bacterial production. Limnol. Oceanogr. 31: 1335-1341.

    Google Scholar 

  • Gilbert, D., C. Amblard, G. Bourdier & A. J. Francez, 1998. Shortterm effect of nitrogen enrichment on the microbial communities of a peatland. Hydrobiologia 373/374: 111-119.

    Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohmstad, 1978. Methods for Physical and Chemical Analysis of Freshwaters. Blackwell Scientific Publication, Oxford: 214 pp.

    Google Scholar 

  • Hobbie, J. E., R. Daley & S. Jasper, 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225-1228.

    Google Scholar 

  • Jackson, D. A, 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204-2214.

    Google Scholar 

  • Jugnia, L. B., R. D. Tadonléké, T. Sime-Ngando, S. M. Foto & N. Kemka, 1998. Short-term variation in the abundance and cell volume of bacterioplankton in an artificial tropical lake. Hydrobiologia 385: 113-119.

    Google Scholar 

  • Lind, O. T., T. H. Chrzanowski & L. Dávalos-Lind, 1997. Clay turbidity and the relative production of bacterioplankton and phytoplankton. Hydrobiologia 353: 1-18.

    Google Scholar 

  • Manly, B. F. J., 1994. Multivariate Statistical Methods. A Primer. 2. Chapman & Hall, 2-6 Boundary Row, London SE1 8HN, U.K.: 215 pp.

    Google Scholar 

  • Markosova, R., M. Benediktova & A. Volkova, 1990. Time-and vertical distribution of bacterioplankton in a shallow eutrophic reservoir. Wat. Res. 24: 1057-1067.

    Google Scholar 

  • Morris, D. P. & W. M. Lewis, Jr., 1992. Nutrient limitation of bacterioplankton growth in Lake Dillon. Colorado. Limnol. Oceanogr. 37: 1179-1192.

    Google Scholar 

  • Neiff, J. J. & A. Poi de Neiff, 1990. Litterfall, leaf decomposition and litter colonization of Tessaria integrifolia (Compositae) in the Paraná River floodplain. Hydrobiologia 203: 45-52.

    Google Scholar 

  • Nürnberg, G. K. & M. Shaw, 1998. Productivity of clear and humic lakes: nutrients, Phytoplankton, bacteria. Hydrobiologia 382: 97-112.

    Google Scholar 

  • Pace, M. L. & J. J. Cole, 1994. Primary and bacterial production in lakes - are they coupled over depth? J. Plankton Res. 16(6): 661-672.

    Google Scholar 

  • Pagioro, T. A. & S.M. Thomaz, 1999. Decomposition of Eichhornia azurea from limnologically different environments of the Upper Paraná River Floodplain. Hydrobiologia 411: 45-51.

    Google Scholar 

  • Philippi, T. E., 1993. Multiple regression: Herbivory. In Scheiner, S. M. & J. Gurevitch (eds), Design and Analysis of Ecological Experiments. Chapman & Hall, New York: 183-210.

    Google Scholar 

  • Porter, K. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943-948.

    Google Scholar 

  • Rai, H. & G. Hill, 1984. Microbiology of Amazonian waters. In Sioli, H. (ed.), The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and its Basin. Dr W. Junk Publishers, Dordrecht, The Netherlands: 413-441.

    Google Scholar 

  • Rossa, D. C., 2001. Abundância e biomassa de rotíferos em diferentes ambientes lênticos da planície de inundação do alto Rio Paraná (PR/MS). Maringá: Universidade Estadual de Maringá: 33 pp. (MSc Thesis).

    Google Scholar 

  • Schweitzer, B. & M. Simon, 1995. Growth limitation of planktonic bacteria in a large mesotrophic lake. Microb. Ecol. 30: 89-104.

    Google Scholar 

  • Sherr, E. B. & B. F. Sherr, 1993. Preservation and storage of samples for enumeration of heterotrophic protists. In Kemp, P. F., B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Boca Raton, Florida: 207-212.

    Google Scholar 

  • Simon, M., B. C. Cho & F. Azam, 1992. Significance of bacterial biomass in lakes and the ocean: comparison to phytoplankton biomass and biogeochemical implications. Mar. Ecol. Prog. Ser. 86: 103-110.

    Google Scholar 

  • Thomaz, S. M., M. C. Roberto & L. M. Bini, 1997. Caracterização limnológica dos ambientes aquáticos e influência dos níveis fluviométricos. In de M. Vazzoler, A. E. A., A. A. Agostinho & N. S. Hahn (eds), A Planície de Inundação do Alto Rio Paraná: Aspectos Físicos, Biológicos e Socioeconômicos. Eduem, Maringá: 73-102.

  • Thomaz, S. M., R. L. Bozelli & F. A. Esteves, 1998. Secondary production and counts of the planktonic bacteria in different clear water bodies of the Amazon. Ciência e Cultura 50: 356-360.

    Google Scholar 

  • Toolan, T., J. D. Wehr & S. Findlay, 1991. Inorganic phosphorus stimulation of bacterioplankton production in a Meso-Eutrophic Lake. Appl. Environ. Microb. 57: 2074-2078.

    Google Scholar 

  • Tranvik, L. J., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb. Ecol. 16: 311-322.

    Google Scholar 

  • Velho, L. F. M., F. A. Lansac-Toha & L. M. Bini, 1999. Spatial and temporal variation in densities of testate amoebae in the plankton of the Upper Paraná River floodplain, Brazil. Hydrobiologia 411: 103-113.

    Google Scholar 

  • Villar, C. A., L. Cabo, P. Vaithiyanathan & C. Bonetto, 2001. Litter decomposition of emergent macrophytes in a floodplain marsh of the lower Paraná River. Aquat. Bot. 70: 105-116.

    Google Scholar 

  • Waichman, A. V., 1996. Autotrophic carbon sources for heterotrophic bacterioplankton in a floodplain lake of central Amazon. Hydrobiologia 341: 27-36.

    Google Scholar 

  • Wang, L., T. D. Miller & J. C. Priscu, 1992. Bacterioplankton nutrient deficiency in a eutrophic lake. Arch. Hydrobiol. 125: 423-439.

    Google Scholar 

  • Weisse, T. & E. MacIsaac, 2000. Significance and fate of bacterial production in oligotrophic lakes in British Columbia. Can. J. Fish. aquat. Sci. 57: 96-105.

    Google Scholar 

  • Zagatto, E. A. G., A. O. Jacintho, B. F. Reis, F. J. Krug, H. Bergamin, L. C. R. Pessenda, J. Mortatti & M. F. Giné, 1981. Manual de análises de plantas empregando sistemas de injeção em fluxo. Universidade de São Paulo, Piracicaba-SP: 45 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, P., Thomaz, S. & Bini, L. Effects of water level, abiotic and biotic factors on bacterioplankton abundance in lagoons of a tropical floodplain (Paraná River, Brazil). Hydrobiologia 510, 67–74 (2003). https://doi.org/10.1023/B:HYDR.0000008532.71152.38

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000008532.71152.38

Navigation