Skip to main content
Log in

Expression of Hemispheric Asymmetry and Psychological Type in the EEG Traveling Wave

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Spontaneous EEG patterns were recorded from 16 derivations in the parieto-occipital area over 2 min for subjects in the resting state with the eyes closed. Further, computer analysis of the current pattern of EEG phase relationships between all derivations was conducted, followed by visualization in real time of the trajectory and velocity of the traveling EEG wave as a computerized animation over the contour of the head. On the basis of visual observations and objective statistical analysis, we found consistent individual characteristics of the time course and trajectory of the traveling wave, which were compared to the results of psychological testing of the subjects. Most characteristic were modulations of the electric activity (traveling) in the transverse direction (from left to right and from right to left) and along the diagonal from the left anterior to the right posterior areas. Distinct groups of subjects were found with the predominance of one or the other trajectory type. The specific direction of the diagonal traveling was significantly correlated with the level of extroversion of the subject: extroverts were characterized by traveling of electric waves from the occiput forward to the vertex along the diagonal indicated, whereas for introverts, traveling from the vertex to the occiput was typical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Shepoval'nikov, A.N., Tsytseroshin, M.N., and Apanasionok, V.S., Formirovaniye biopotentsialnogo polya mozga cheloveka (Formation of the Biopotential Field in the Human Brain), Leningrad: Nauka, 1979.

    Google Scholar 

  2. Sviderskaya, N.E., Significance of Synchronous Cortical Bioelectrical Processes for Estimation of the Brain Activity in Norm and Pathology, Doctoral (Biol.) Dissertation, Moscow: Inst. Higher Nerv. Activity and Neurophysiol., Russian Acad. Sci., 1985.

    Google Scholar 

  3. Verkhlyutov, V.M., Model of the Structure of the Dipole Source of the α Rhythm in the Human Visual Cortex, Zh. Vysh. Nervn. Deyat. im. I.P. Pavlova, 1996, vol. 46, no. 3, p. 496.

    Google Scholar 

  4. Cooper, R. and Mundy-Castle, A.C., Spatial and Temporal Characteristics of the Alpha Rhythm: A Toposcopic Analysis, Electroencephalogr. Clin. Neurophysiol., 1960, vol. 12, p. 153.

    Google Scholar 

  5. Remond, A., Lesevre, N., Joseph, J.P., et al., The Alpha Average. I. Methodology and Description, Electroencephalogr. Clin. Neurophysiol., 1969, vol. 26, p. 245.

  6. Apanasionok, V.S., Dynamics of the Spatial Phase Relationships of Dominat Oscillations of Brain Biopotentials in Adults and Children, Fiziol. Chel., 1976, vol. 2, no. 1, p. 100.

    Google Scholar 

  7. Joseph, J.P., Remond, A., Reiger, H., and Lesevre, N., The Alpha Average. 2. Quantitative Study and Proposition of a Theoretical Model, Electroencephalogr. Clin. Neurophysiol., 1969, vol. 26, p. 350.

    Google Scholar 

  8. Williamson, S.J., Kaufman, L., Lu, Z.-L., et al., Study of Human Occipital Alpha Rhythm: The Alphon Hypothesis and Alpha Suppression, Int. J. Psychophysiol., 1997, vol. 26, nos. 1-3, p. 63.

    Google Scholar 

  9. Shevelev, I.A., Bark, E.D., and Verkhlyutov, V.M., Alpha Scanning of the Visual Cortex: EEG and Magnetic Resonance Tomography Data, Ross. Fiziol. Zh. im. I.M. Sechenova, 2001, vol. 87, no. 8, p. 1050.

    Google Scholar 

  10. Petsche, H. and Rappelsberger, P., Influsnce of Cortical Incisions on Synchronisation Pattern and Traveling Waves, Electroencephalogr. Clin. Neurophysiol., 1970, vol. 28, p. 592.

    Google Scholar 

  11. Dubikaitis, Yu.V. and Dubikaitis, V.V., On the Potential Field and the Alpha Rhythm at the Surface of the Human Head, Biofizika, 1962, vol. 7, no. 3, p. 345.

    Google Scholar 

  12. Andersen, P. and Andersson, S.A., Physiological Basis of the Alpha Rhythm, New York: Appleton-Century-Crofts, 1968.

    Google Scholar 

  13. Verkhlyutov, V.M., Bark, E.D., Shevelev, I.A., et al., Dynamic Localization of a Dipole α-Rhythm Source in the Human Brain, Zh. Vysh. Nervn. Deyat. im. I.P. Pavlova, 1999, vol. 49, no. 1, p. 3.

    Google Scholar 

  14. Shevelev, I.A., Temporal Analysis of Signals in the Visual Cortex, Fiziol. Chel., 1997, vol. 23, no. 2, p. 68.

    Google Scholar 

  15. Kamenkovich, V.M., Bark, E.D., Shevelev, I.A., and Sharaev, G.A., Relationships between Visual Illusions and the Phase Shift of Rhythmic Photostimulation, Zh. Vysh. Nervn. Deyat. im. I.P. Pavlova, 1997, vol. 47, no. 3, p. 496.

    Google Scholar 

  16. Kamenkovich, V.M., Bark, E.D., Verkhlyutov, V.M., et al., Visual Illusions Caused by Rhythmic Flashes and Traveling of the Alpha Waves in the Cortex, Zh. Vysh. Nervn. Deyat. im. I.P. Pavlova, 1998, vol. 48, no. 3, p. 449.

    Google Scholar 

  17. Shevelev, I.A., Kostelyants, N.B., Kamenkovich, V.M., et al., Recognition of Movement and Phases of the Alpha Wave, Sens. Sist., 1991, vol. 5, no. 3, p. 54.

    Google Scholar 

  18. Kamenkovich, V.M., Shevelev, I.A., and Kostelyanets, N.B., Assessing the Direction of the Uniform and Nonuniform Motion of the EEG Alpha Rhythm, Zh. Vysh. Nervn. Deyat. im. I.P. Pavlova, 1995, vol. 45, no. 2, p. 358.

    Google Scholar 

  19. Suzuki, H., Phase Relationships of Alpha Rhythm in Man, Jap. J. Physiol., 1974, vol. 24, no. 6, p. 569.

    Google Scholar 

  20. Petsche, H. and Sterc, J., The Significance of the Cortex for the Traveling Phenomenon of Brain Waves, Jap. J. Physiol., 1968, vol. 25, p. 11.

    Google Scholar 

  21. Verzeano, M. and Negishi, K., Neuronal Activity in Cortical and Thalamic Networks, J. Gen. Physiol., 1960, vol. 43, no. 6, p. 177.

    Google Scholar 

  22. Smit, N.Yu. and Belov, D.R., Traveling Wave of the EEG Alpha Rhythm in Introverts and Extroverts, Vestn. St. Petersburg. Univ., Ser. 3 (Biol.), 2001, vol. 19, no. 3, p. 13.

    Google Scholar 

  23. Livanov, M.N. and Anan'ev, V.M., Elektroentsefaloskopiya (Electroencephaloscopy), Moscow: Medgiz, 1960.

    Google Scholar 

  24. Hori, H., Hayasaka, K., Sato, K., et al., A Study of Phase Relationship in Human Alpha Activity. Correlation of Different Regions, Electroencephalogr. Clin. Neurophysiol., 1969, vol. 26, p. 19.

    Google Scholar 

  25. Lehman, D., Multichannel Topography of Human Alpha EEG Fields, Electroencephalogr. Clin. Neurophysiol., 1971, vol. 30, p. 439.

    Google Scholar 

  26. Petsche, H., Rappelsberger, P., and Trappl, R., Properties of Cortical Seizure Potential Fields, Electroencephalogr. Clin. Neurophysiol., 1970, vol. 29, p. 567.

    Google Scholar 

  27. Shepovalnikov, A.N., Tsytseroshin, M.N., Apanasionok, V.S., and Rozhkov, V.P., On the Diagnostic Possibilities of Automated Assessment of Statistical Properties of the Spatial and Temporal Structure of Biopotential Brain Field, Fiziol. Chel., 1980, vol. 6, p. 922.

    Google Scholar 

  28. Nikolaev, A.R., Ivanitskii, G.A., and Ivanitskii, A.M., Reproducing Patterns of α-Rhythm of the EEG in Psychological Task Solving, Fiziol. Chel., 1998, vol. 24, no. 3, p. 5.

    Google Scholar 

  29. Pavlova, L.P. and Romanenko, A.F., Sistemnyi podkhod k psikhofiziologicheskomu issledovaniyu mozga (System Approach to the Psychophysiological Study of the Brain), Leningrad: Nauka, 1988.

    Google Scholar 

  30. Bianki, V.L., Mekhanizmy parnogo mozga (Mechanisms of the Paired Brain), Leningrad: Nauka, 1989.

    Google Scholar 

  31. Sviderskaya, N.E., Conscious and Unconscious Information in Human Cognitive Activity, Zh. Vysh. Nervn. Deyat. im. I.P. Pavlova, 1993, vol. 43, no. 2, p. 271.

    Google Scholar 

  32. Urbakh, V.Yu., Matematicheskaya statistika dlya medikov i biologov (Mathematical Statistics for Medics and Biologists), Moscow: Akad. Nauk SSSR, 1963.

    Google Scholar 

  33. Pavlova, L.P., EEG Criteria for the Assessment of the Functional State of the Human Brain, in Rukovodstvo po fiziologii truda (Manual on Labor Physiology), Moscow: Meditsina, 1969, p. 59.

    Google Scholar 

  34. Pavlova, L.P. and Krivo, V.M., Psychophysiological Investigation of Extroversion-Introversion, Fiziol. Chel., 1977, vol. 3, no. 1, p. 28.

    Google Scholar 

  35. Dimond, S.J. and Beamont, J.S., Processing in Perceptual Integration and within the Cerebral Hemispheres, Brit. J. Physiol., 1972, vol. 63, p. 509.

    Google Scholar 

  36. Davis, R. and Schmit, V., Visual and Verbal Coding in the Interchemispheric Transfer of Information, Brain, 1973, vol. 97, p. 347.

    Google Scholar 

  37. Rugg, M.D. and Dickens, M.M.J., Dissociation of Alpha and Theta Activity as Function of Verbal and Visuospatial Tasks, Electroencephalogr. Clin. Neurophysiol., 1982, vol. 53, p. 201.

    Google Scholar 

  38. Doricchi, F., Milana, I., and Violanti, C., Patterns of Hemispheric Lateralization in Dream Recaller and Non-Dream Recallers, Int. J. Neurosci., 1993, vol. 69, nos. 1-4, p. 105.

    Google Scholar 

  39. Sviderskaya, N.E., Sinkhronnaya elektricheskaya aktivnost' mozga i psikhicheskiye processy (Synchronous Brain Activity and Psychological Processes), Moscow: Nauka, 1987.

    Google Scholar 

  40. Sviderskaya, N.E. and Korolkova, T.A., Spatial Organization of the EEG and Individual Psychological Characteristics, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1996, vol. 46, no. 4, p. 689.

    Google Scholar 

  41. Sviderskaya, N.E. and Korolkova, T.A., Effects of the Nervous System Properties and Temperament on the Spatial Organization of the EEG, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1996, vol. 46, no. 5, p. 849.

    Google Scholar 

  42. Rusalova, M.N., The Levels of Consciousness and the Levels of Activation, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1990, vol. 40, no. 6, p. 1097.

    Google Scholar 

  43. Ivanitskii, A.M., Podkletnova, I.M., and Taratynova, G.V., Studies of the Dynamics of Intracortical Interactions during Reasoning Activity, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1990, vol. 40, no. 2, p. 230.

    Google Scholar 

  44. Rusalov, V.M., Rusalova, M.N., Kalashnikova, I.G., et al., Bioelectric Activity of Human Brain in Representatives of Different Temperament Types, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1993, vol. 43, no. 3, p. 530.

    Google Scholar 

  45. Bekhtereva, N.P., Zdorovyi i bolnoi mozg cheloveka (Healthy and Ill Human Brain), Leningrad, 1980.

  46. Tsytseroshin, M.N., On the Statistic Properties of Random Field of Human Brain Biopotentials, Fiziol. Chel., 1975, vol. 1, no. 1, p. 118.

    Google Scholar 

  47. Shepoval'nikov, A.N. and Tsytseroshin, M.N., Spatial Structure of the Functional Organization of the Whole Brain, Fiziol. Chel., 1987, vol. 13, no. 6, p. 892.

    Google Scholar 

  48. Shepoval'nikov, A.N. and Tsytseroshin, M.N., Evolutionary Aspects of Integrative Brain Activity in Humans, Ross. Fiziol. Zh. im I.M. Sechenova, 1999, vol. 85, no. 10, p. 1187.

    Google Scholar 

  49. Prichard, W.S. and Duke, D.W., Segregation of the Thalamic Alpha Rhythm from Cortical Alpha Activity using the Salvit-Green S-Statistic and Estimated Correlation Dimension, Int. J. Psychophysiol., 1997, vol. 26, p. 263.

    Google Scholar 

  50. Lutzenberger, W., EEG Alpha Dynamics as Viewed from EEG Dimension Dynamics, Int. J. Psychophysiol., 1997, vol. 26, p. 273.

    Google Scholar 

  51. Eysenck, H.J., The Biological Basis of Personality, Springfield: Thomas, 1967.

    Google Scholar 

  52. Dobrokhotova, T.A. and Bragina, N.N., Funktsionalnaya asimmetriya i psikhopatologiya ochagovykh porazhenii mozga (Functional Asymmetry and Psychopathology of Focal Brain Lesions), Moscow: Meditsina, 1977.

    Google Scholar 

  53. Zhavoronkova, L.A., Dynamics of Interchemispheric Relationships of the EEG during the Recovery of the Nervous and Mental Activity. Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1990, vol. 40, no. 2, p. 238.

    Google Scholar 

  54. Zhavoronkova, L.A. and Dobronravova, I.S., Specific Features of Brain Recovery in Patients with Diencephalic and Hemispheric Lesions (Coherent EEG Analysis), Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1993, vol. 43, no. 4, p. 748.

    Google Scholar 

  55. Boldyreva, G.N., Sharova, E.V., Zhavoronkova, L.A., and Dobrokhotova, T.A., Reflection of Different Regulation Levels of Human Brain Activity in Spectral and Coherent EEG Parameters, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1992, vol. 42, no. 3, p. 439.

    Google Scholar 

  56. Zhavoronkova, L.A., Dynamics of Interchemispheric Relationships of the EEG during the Recovery of the Nervous and Mental Activity. Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1996, vol. 46, no. 4, p. 699.

    Google Scholar 

  57. Luria, A.R., Osnovy neiropsikhologii (Basic of Neuropsychology), Moscow: Mosk. Gos. Univ., 1973.

    Google Scholar 

  58. Plotkin, W.B., On the Self-regulation on Occipital Alpha Rhythm: Central Strategies, States of Consciousness and the Role of Physiological Feedback, J. Exp. Psychol., 1976, vol. 105, p. 66.

    Google Scholar 

  59. Varela, F.J., Toro, A., John, E.R., and Schwartz, E.I., Perceptual Framing and Cortical Alpha Rhythm, Neuropsychol., 1981, vol. 19, p. 675.

    Google Scholar 

  60. Moskalenko, V.I., Experimental Study of Fine Structure of a Spectrum of Human Electroencephalogram in the Alpha Band, Psikhofiziologicheskiye zakonomernosti vospriyatiya i pamyati (Psychophysiological Patterns of Perception and Memory), Lebedev, A.N., Ed., Moscow: Nauka, 1985, p. 120.

    Google Scholar 

  61. Farber, D.A., Strukturno-funktsionalnaya organizatsiya razvivayushchegosya mozga (Structural and Functional Organization of the Developing Brain), Leningrad: Nauka, 1990.

    Google Scholar 

  62. Machinskaya, R.I. and Dubrovinskaya, N.V., Functional Organization of Brain Hemispheres in 7-to-8-Year-old Children, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1996, vol. 46, no. 3, p. 437.

    Google Scholar 

  63. Bondar', A.T. and Fedotchev, A.I., Once Again on the Fine Structure of the α-Rhythm of the Human EEG: Two Spectral Components in the State of Rest, Fiziol. Chel., 2001, vol. 27, no. 4, p. 15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belov, D.R., Kolodyazhnyi, S.F. & Smit, N.Y. Expression of Hemispheric Asymmetry and Psychological Type in the EEG Traveling Wave. Human Physiology 30, 1–13 (2004). https://doi.org/10.1023/B:HUMP.0000013758.36735.42

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HUMP.0000013758.36735.42

Keywords

Navigation