Skip to main content
Log in

Matrix Metalloproteinase Inhibitor Development and the Remodeling of Drug Discovery

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Collagen turnover is a slow process on a biologic timescale with a t\(\frac{1}{2}\) of 20–27 days that is mediated primarily by the matrix metalloproteinases (MMPs). Low collagen metabolism is not due to an intrinsically low Km of MMPs, but rather due to a highly regulated system of activity. Despite the stability of collagen and MMPs, the articles in this special addition illustrate the importance of this enzyme family in the disease process leading to congestive heart failure. Like MMPs, drug development is a tightly regulated process, and the successful turnover of MMP inhibitors into a marketed drug has also been a slow process on a pharmaceutical timescale. Since the discovery of the archetypal MMP (type 1 collagenase) over four decades ago by Gross and Lapierre, most major pharmaceutical companies have had MMP inhibitor programs for a variety of indications. Despite decades of research, tens of thousands of compounds synthesized and screened, and billions of dollars spent in clinical studies—Periostat® (doxycycline hyclate, CollaGenex Pharmaceuticals Inc.) is the only collagenase inhibitor to be successfully launched. In addition, Periostat's approval is currently limited to periodontal disease. This article focuses on some of the lessons to be learned from the failure of so many MMP inhibitors across so many indications, and what potential exists for MMP inhibitors as a drug class, especially for heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hodgson JA. Remodeling MMPIs. Biotechnology 1995;30:554–557.

    Google Scholar 

  2. Hauser P, Vaes G. Degradation of cartilage proteoglycans by a neutral proteinase secreted by rabbit bone-marrow macrophages in culture. Biochemical Journal 1978;172:275–284.

    PubMed  Google Scholar 

  3. Lohi J, Wilson CL, Roby JD, Parks WC. Epilysin, a novel human matrix metalloproteinase (MMP-28) expressed in testis and keratinocytes and in response to injury. Journal of Biological Chemistry 2001;276:10134–10144.

    PubMed  Google Scholar 

  4. Nixon JS, Bottomley KMK, Broadhurst MJ, Brown PA, JohnsonWH, Lawton G, Marley J, Sedgwick AD, Wilkinson SE. Potent collagenase inhibitors prevent interleukin-1-induced cartilage degradation in vitro. International Journal of Tissue Reactions 1991;13:237–243.

    PubMed  Google Scholar 

  5. Baragi VM, Jordan H, Renkiewicz RR. A protocol for rapid screening of proteoglycan-degrading metalloproteinase inhibitors. Journal of Pharmacological & Toxicological Methods 1992;27:101–105.

    Google Scholar 

  6. Ye QZ, Johnson LL, Nordan I, Hupe D, Hupe L. A recombinant human stromelysin catalytic domain identifying tryptophan derivatives as human stromelysin inhibitors. Journal of Medicinal Chemistry 1994;37:206–209.

    PubMed  Google Scholar 

  7. Ye QZ, Johnson LL, Hupe DJ, Baragi V. Purification and characterization of the human stromelysin catalytic domain expressed in Escherichia coli. Biochemistry 1992;31:11231–11235.

    PubMed  Google Scholar 

  8. Moy FJ, Chanda PK, Chen J, Cosmi S, Edris W, Levin JI, Rush TS, Wilhelm J, Powers R. Impact of mobility on structure-based drug design for the MMPs. Journal of the American Chemical Society 2002;124:12658–12659.

    PubMed  Google Scholar 

  9. Schwardt O, Kolb H, Ernst B. Drug discovery today. Current Topics in Medicinal Chemistry 2003;3:1–9.

    PubMed  Google Scholar 

  10. Bohm HJ, G. S, eds. Protein-Ligand Interactions. From Molecular Recognition to Drug Design. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co KGaA, 2003.

    Google Scholar 

  11. Leach AR, Gillet VJ. An Introduction to Chemoinformatics. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2003.

    Google Scholar 

  12. Bleicher KH, Bohm HJ, Muller K, Alanine AI. Hit and lead generation: Beyond high-throughput screening. Nature Reviews. Drug Discovery 2003;2:369–378.

    PubMed  Google Scholar 

  13. Klabunde T, Hessler G. Drug design strategies for targeting G-protein-coupled receptors. Chembiochem 2002;3:928–944.

    PubMed  Google Scholar 

  14. Norman P. The impact of new technologies on drug design. Drug News & Perspectives 2001;14:123–128.

    Google Scholar 

  15. Meador V, Jordan W, Zimmermann J. Increasing throughput in lead optimization in vivo toxicity screens. Current Opinion in Drug Discovery & Development 2002;5:72–78.

    Google Scholar 

  16. Colburn WA. Biomarkers in drug discovery and development: From target identification through drug marketing. Journal of Clinical Pharmacology 2003;43:329–341.

    PubMed  Google Scholar 

  17. Frank R, Hargreaves R. Clinical biomarkers in drug discovery and development. Nature Reviews. Drug Discovery 2003;2:566–580.

    PubMed  Google Scholar 

  18. Rosenkranz B. Biomarkers and surrogate endpoints in clinical drug development. Applied Clinical Trials 2003;12:30–40.

    Google Scholar 

  19. kaisernetwork.org. Prescription Drugs Cost of New Drug Development Reaches $897M. In, 2003.

  20. Workman RW. Simulation of the drug development process: A case study from the pharmaceutical industry. In: Anderson Consulting, 1994;33:2089–2095.

  21. Nguyen Q, Willenbrock F, Cockett MI, O'Shea M, Docherty AJ, Murphy G. Different domain interactions are involved in the binding of tissue inhibitors of metalloproteinases to stromelysin-1 and gelatinase A. Biochemistry 1994;33:2089–2095.

    PubMed  Google Scholar 

  22. Stratmann B, Farr M, Tschesche H. Characterization of C-terminally truncated human tissue inhibitor of metalloproteinases-4 expressed in Pichia pastoris. Biological Chemistry 2001;382:987–991.

    PubMed  Google Scholar 

  23. Baragi VM, Fliszar CJ, Conroy MC, Ye QZ, Shipley JM, Welgus HG. Contribution of the C-terminal domain of metalloproteinases to binding by tissue inhibitor of metalloproteinases. C-terminal truncated stromelysin and matrilysin exhibit equally compromised binding affinities as compared to full-length stromelysin. Journal of Biological Chemistry 1994;269:12692–12697.

    PubMed  Google Scholar 

  24. Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP. Tissue inhibitors of metalloproteinases: Structure, regulation and biological functions. European Journal of Cell Biology 1997;74:111–122.

    PubMed  Google Scholar 

  25. Khokha R, Waterhouse P, Yagel S, Lala PK, Overall CM, Norton G, Denhardt DT. Antisense RNA-induced reduction in murine TIMP levels confers oncogenicity on Swiss 3T3 cells. Science 1989;243:947–950.

    PubMed  Google Scholar 

  26. Colandrea TD, D'Armiento J, Kesari KV, Chada KK. Collagenase induction promotes mouse tumorigenesis by two independent pathways. Molecular Carcinogenesis 2000;29:8–16.

    PubMed  Google Scholar 

  27. Sternlicht MD, Bissell MJ, Werb Z. The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumor promoter. Oncogene 2000;19:1102–1113.

    PubMed  Google Scholar 

  28. Neuhold LA, Killar L, ZhaoW, Sung ML, Warner L, Kulik J, Turner J, Wu W, Billinghurst C, Meijers T, Poole AR, Babij P, DeGennaro LJ. Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. Journal of Clinical Investigation 2001;107:35–44 (comment).

    PubMed  Google Scholar 

  29. Roten L, Nemoto S, Simsic J, Coker ML, Rao V, Baicu S, Defreyte G, Soloway PJ, Zile MR, Spinale FGIZMR. Effects of gene deletion of the tissue inhibitor of the matrix metalloproteinase-type 1 (TIMP-1) on left ventricular geometry and function in mice. Journal of Molecular & Cellular Cardiology 2000;32:109–120.

    Google Scholar 

  30. Creemers EE, Davis JN, Parkhurst AM, Leenders P, Dowdy KB, Hapke E, Hauet AM, Escobar PG, Cleutjens JP, Smits JF, Daemen MJ, Zile MR, Spinale FG. Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice. American Journal of Physiology-Heart &amp: Circulatory Physiology 2003;284:H364–371.

    Google Scholar 

  31. Kim HE, Dalal SS, Young E, Legato MJ, Weisfeldt ML, D'Armiento J. Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. Journal of Clinical Investigation 2000;106:857–866 (comment).

    PubMed  Google Scholar 

  32. DeClerck YA, Imren S. Protease inhibitors: Role and potential therapeutic use in human cancer. European Journal of Cancer 1994;30A:2170–2180.

    PubMed  Google Scholar 

  33. Kruger A, Sanchez-Sweatman OH, Martin DC, Fata JE, Ho AT, Orr FW, Ruther U, Khokha R. Host TIMP-1 overexpression confers resistance to experimental brain metastasis of a fibrosarcoma cell line. Oncogene 1998;16:2419–2423.

    PubMed  Google Scholar 

  34. Buck TB, Yoshiji H, Harris SR, Bunce OR, Thorgeirsson UP. The effects of sustained elevated levels of circulating tissue inhibitor of metalloproteinases-1 on the development of breast cancer in mice. Annals of the New York Academy of Sciences 1999;878:732–735.

    PubMed  Google Scholar 

  35. Ikenaka Y, Yoshiji H, Kuriyama S, Yoshii J, Noguchi R, Tsujinoue H, Yanase K, Namisaki T, Imazu H, Masaki T, Fukui H. Tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibits tumor growth and angiogenesis in the TIMP-1 transgenic mouse model. International Journal of Cancer 2003;105:340–346.

    Google Scholar 

  36. Schett G, Hayer S, Tohidast-Akrad M, Schmid BJ, Lang S, Turk B, Kainberger F, Haralambous S, Kollias G, Newby AC, Xu Q, Steiner G, Smolen J. Adenovirus-based overexpression of tissue inhibitor of metalloproteinases 1 reduces tissue damage in the joints of tumor necrosis factor alpha transgenic mice. Arthritis & Rheumatism 2001;44:2888–2898.

    Google Scholar 

  37. Schultz RM, Silberman S, Persky B, Bajkowski AS, Carmichael DF. Inhibition by human recombinant tissue inhibitor of metalloproteinases of human amnion invasion and lung colonization by murine B16-F10 melanoma cells. Cancer Research 1988;48:5539–5545.

    PubMed  Google Scholar 

  38. Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A, Levi M, Nube O, Baker A, Keshet E, Lupu F, Herbert JM, Smits JF, Shapiro SD, Baes M, Borgers M, Collen D, Daemen MJ, Carmeliet P. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nature Medicine 1999;5:1135–1142 (comment).

    PubMed  Google Scholar 

  39. Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 2000;103:481–490.

    PubMed  Google Scholar 

  40. Clark IM, Powell LK, Cawston TE. Tissue inhibitor of metalloproteinases (TIMP-1) stimulates the secretion of collagenase from human skin fibroblasts. Biochemical & Biophysical Research Communications 1994;203:874–880.

    Google Scholar 

  41. Greenwald RA. Thirty-six years in the clinic without an MMP inhibitor. What hath collagenase wrought? Annals of the New York Academy of Sciences 1999;878:413–419.

    PubMed  Google Scholar 

  42. Rosemurgy A, Harris J, Langleben A, Casper E, Goode S, Rasmussen H. Marimastat in patients with advanced pancreatic cancer: A dose-finding study. American Journal of Clinical Oncology 1999;22:247–252.

    PubMed  Google Scholar 

  43. Tierney GM, Griffin NR, Stuart RC, Kasem H, Lynch KP, Lury JT, Brown PD, Millar AW, Steele RJ, Parsons SL. A pilot study of the safety and effects of the matrix metalloproteinase inhibitor marimastat in gastric cancer. European Journal of Cancer 1999;35:563–568.

    PubMed  Google Scholar 

  44. Nemunaitis J, Poole C, Primrose J, Rosemurgy A, Malfetano J, Brown P, Berrington A, Cornish A, Lynch K, Rasmussen H, Kerr D, Cox D, Millar A. Combined analysis of studies of the effects of the matrix metalloproteinase inhibitor marimastat on serum tumor markers in advanced cancer: Selection of a biologically active and tolerable dose for longer-term studies. Clinical Cancer Research 1998;4:1101–1109.

    PubMed  Google Scholar 

  45. Wojtowicz-Praga S, Torri J, Johnson M, Steen V, Marshall J, Ness E, Dickson R, Sale M, Rasmussen HS, Chiodo TA, Hawkins MJ. Phase I trial of Marimastat, a novel matrix metalloproteinase inhibitor, administered orally to patients with advanced lung cancer. Journal of Clinical Oncology 1998;16:2150–2156.

    PubMed  Google Scholar 

  46. Boasberg P, Eisenberg M, Harris J, Langleben A, Ahmann F, Roth B, Berkheimer M, Rasmussen H. Marimastat in patients with hormone refractory prostate concer: A dose-finding study. Proc Am Soc Clin Oncol 1997;16:316A.

    Google Scholar 

  47. Drummond AH, Beckett P, Brown PD, Bone EA, Davidson AH, Galloway WA, Gearing AJ, Huxley P, Laber D, McCourt M, Whittaker M, Wood LM, Wright A. Preclinical and clinical studies of MMP inhibitors in cancer. Annals of the New York Academy of Sciences 1999;878:228–235.

    PubMed  Google Scholar 

  48. Hutchinson JW, Tierney GM, Parsons SL, Davis TR. Dupuytren's disease and frozen shoulder induced by treatment with a matrix metalloproteinase inhibitor. Journal of Bone & Joint Surgery-British Volume 1998;80:907–908.

    Google Scholar 

  49. King J, Zhao J, Clingan P, Morris D. Randomised double blind placebo control study of adjuvant treatment with the metalloproteinase inhibitor, Marimastat in patients with inoperable colorectal hepatic metastases: Significant survival advantage in patients with musculoskeletal side-effects. Anticancer Research 2003;23:639–645.

    PubMed  Google Scholar 

  50. Whittaker M, Floyd CD, Brown P, Gearing AJH. Design and therapeutic application of matrix metalloproteinase inhibitors. Chem Rev 1999;99:2735–2776.

    PubMed  Google Scholar 

  51. Bird J, Montana G, Wills RE, Baxter AD, Owens DA. Chem Abstr 1998;129:22571.

    Google Scholar 

  52. Brown PD. Ongoing trials with matrix metalloproteinase inhibitors. Expert Opinion on Investigational Drugs 2000;9:2167–2177.

    PubMed  Google Scholar 

  53. Renkiewicz R, Qiu L, Lesch C, Sun X, Devalaraja R, Cody T, Kaldjian E, Welgus H, V. B. Broad-spectrum matrix metalloproteinase inhibitor marimastat-induced musculoskeletal side effects in rats. Arthritis and Rheumatism 2003;48:1742–1749.

    PubMed  Google Scholar 

  54. Martignetti JA, Aqeel AA, Sewairi WA, Boumah CE, Kambouris M, Mayouf SA, Sheth KV, Eid WA, Dowling O, Harris J, GlucksmanMJ, Bahabri S, Meyer BF, Desnick RJ. Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nature Genetics 2001;28:261–265 (comment).

    PubMed  Google Scholar 

  55. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 1998;93:411–422.

    PubMed  Google Scholar 

  56. Holmbeck K, Bianco P, Caterina J, Yamada S, Kromer M, Kuznetsov SA, Mankani M, Robey PG, Poole AR, Pidoux I, Ward JM, Birkedal-Hansen H. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 1999;99:81–92;17:5238–5248.

    PubMed  Google Scholar 

  57. Gomis–Ruth FX, Maskos K, Betz M, Bergner A, Huber R, Suzuki K, Yoshida N, Nagase H, Brew K, Bourenkov GP, Bartunik H, Bode W. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature 1997;389:77–81.

    PubMed  Google Scholar 

  58. Fernandez–Catalan C, Bode W, Huber R, Turk D, Calvete JJ, Lichte A, Tschesche H, Maskos K. Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor.EMBO Journal 1998;17:5238–5248.

    PubMed  Google Scholar 

  59. van der Laan WH, Quax PH, Seemayer CA, Huisman LG, Pieterman EJ, Grimbergen JM, Verheijen JH, Breedveld FC, Gay RE, Gay S, Huizinga TW, Pap T. Cartilage degradation and invasion by rheumatoid synovial fibroblasts is inhibited by gene transfer of TIMP-1 and TIMP-3. Gene Therapy 2003;10:234–242.

    PubMed  Google Scholar 

  60. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999;284:808–812.

    PubMed  Google Scholar 

  61. Gore M, A'Hern R, Stankiewicz M, Slevin M. Tumour marker levels during marimastat therapy. Lancet 1996;348:263–264 (comment).

    PubMed  Google Scholar 

  62. Hidalgo M, Eckhardt SG. Development of matrix metalloproteinase inhibitors in cancer therapy. Journal of the National Cancer Institute 2001;93:178–193.

    PubMed  Google Scholar 

  63. Cianfrocca M, Cooley TP, Lee JY, Rudek MA, Scadden DT, Ratner L, Pluda JM, Figg WD, Krown SE, Dezube BJ. Matrix metalloproteinase inhibitor COL-3 in the treatment of AIDS-related Kaposi's sarcoma: A phase I AIDS malignancy consortium study. Journal of Clinical Oncology 2002;20:153–159.

    PubMed  Google Scholar 

  64. Michael M, Babic B, Khokha R, Tsao M, Ho J, Pintilie M, Leco K, Chamberlain D, Shepherd FA. Expression and prognostic significance of metalloproteinases and their tissue inhibitors in patients with small-cell lung cancer. Journal of Clinical Oncology 1999;17:1802–1808.

    PubMed  Google Scholar 

  65. Corporation B. In, 1999.

  66. Moore M, et al. Proc Am Soc Clin Oncol 2001;19:240a.

    Google Scholar 

  67. Pozzi A, Moberg PE, Miles LA, Wagner S, Soloway P, Gardner HA. Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization. Proceedings of the National Academy of Sciences of the United States of America 2000;97:2202–2207.

    PubMed  Google Scholar 

  68. Pozzi A, LeVine WF, Gardner HA. Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene 2002;21:272–281.

    PubMed  Google Scholar 

  69. Golub LM, Ciancio S, Ramamamurthy NS, Leung M, McNamara TF. Low-dose doxycycline therapy: Effect on gingival and crevicular fluid collagenase activity in humans. Journal of Periodontal Research 1990;25:321–330.

    PubMed  Google Scholar 

  70. Kiili M, Cox SW, Chen HW, Wahlgren J, Maisi P, Eley BM, Salo T, Sorsa T. Collagenase-2 (MMP-8) and collagenase-3 (MMP-13) in adult periodontitis: Molecular forms and levels in gingival crevicular fluid and immunolocalisation in gingival tissue. Journal of Clinical Periodontology 2002;29:224–232.

    PubMed  Google Scholar 

  71. Caton J, Blieden T, Adams D, al. e. Subantimicrobial doxycycline therapy for periodontitis. J Dent Res 1997;76.

  72. Caton J, Ciancio S, Crout R, Hefti A, Polson A. Adjunctive use of subantimicrobial doxycycline therapy for periodontitis. J Dent Res 1998;77:1001.

    Google Scholar 

  73. Caton JG, Ciancio SG, Blieden TM, Bradshaw M, Crout RJ, Hefti AF, Massaro JM, Polson AM, Thomas J, Walker C. Subantimicrobial dose doxycycline as an adjunct to scaling and root planing: Post-treatment effects. Journal of Clinical Periodontology 2001;28:782–789.

    PubMed  Google Scholar 

  74. Baxter BT, Pearce WH, Waltke EA, Littooy FN, Hallett JW, Jr., Kent KC, Upchurch GR, Jr., Chaikof EL, Mills JL, Fleckten B, Longo GM, Lee JK, Thompson RW. Prolonged administration of doxycycline in patients with small asymptomatic abdominal aortic aneurysms: Report of a prospective (Phase II) multicenter study. Journal of Vascular Surgery 2002;36:1–12.

    PubMed  Google Scholar 

  75. Bachmann LH, Stephens J, Richey CM, Hook EW, 3rd. Measured versus self-reported compliance with doxycycline therapy for chlamydia-associated syndromes: High therapeutic success rates despite poor compliance. Sexually Transmitted Diseases 1999;26:272–278 (comment).

    PubMed  Google Scholar 

  76. Pharmaceuticals C. CGPI fact sheet 8-13-02. In, 2002.

  77. Baker PJ, Evans RT, Coburn RA, Genco RJ. Tetracycline and its derivatives strongly bind to and are released from the tooth surface in active form. Journal of Periodontology 1983;54:580–585.

    PubMed  Google Scholar 

  78. Loesche WJ. Periodontal disease as a risk factor for heart disease. Compendium 1994;15:976, 978-982, 985-986 passim; quiz 992.

    PubMed  Google Scholar 

  79. Beck J, Garcia R, Heiss G, Vokonas PS, Offenbacher S. Periodontal disease and cardiovascular disease. Journal of Periodontology 1996;67:1123–1137.

    PubMed  Google Scholar 

  80. Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. Journal of Periodontology 2000;71:1554–1560.

    PubMed  Google Scholar 

  81. Gibson FC, Hong C, Wang J, Genco C. Oral infection with invasive P gingivalis stimulates accelerated atherosclerotic plaque formation in ApoE Mice. Interscience Conference on Antimicrobial Agents, San Diego, 2002.

  82. Genco RJ, Glurich I, Haraszthy VI. Overview of risk factors for periodontal disease and implications for diabetes and cardiovascular disease. Compendium of Continuing Education in Dentistry 1998;Suppl S40-46.

  83. Franklin IJ, Harley SL, Greenhalgh RM, Powell JT. Uptake of tetracycline by aortic aneurysm wall and its effect on inflammation and proteolysis. British Journal of Surgery 1999;86:771–775.

    PubMed  Google Scholar 

  84. Lokeshwar BL. MMP inhibition in prostate cancer. Annals of the New York Academy of Sciences 1999;878:271–289.

    PubMed  Google Scholar 

  85. Thompson RW, Baxter BT. MMP inhibition in abdominal aortic aneurysms. Rationale for a prospective randomized clinical trial. Annals of the New York Academy of Sciences 1999;878:159–178.

    PubMed  Google Scholar 

  86. French BA, Mazur W, Geske RS, Bolli R. Direct in vivo gene transfer into porcine myocardium using replicationdeficient adenoviral vectors. Circulation 1994;90:2414–2424.

    PubMed  Google Scholar 

  87. Gilgenkrantz H, Duboc D, Juillard V, Couton D, Pavirani A, Guillet JG, Briand P, Kahn A. Transient expression of genes transferred in vivo into heart using first-generation adenoviral vectors: Role of the immune response. Human Gene Therapy 1995;6:1265–1274.

    PubMed  Google Scholar 

  88. Steiner G. The use of fibrates and of statins in preventing atherosclerosis in diabetes. Current Opinion in Lipidology 2001;12:611–617.

    PubMed  Google Scholar 

  89. King MK, Coker ML, Goldberg A, McElmurray JH, 3rd, Gunasinghe HR, Mukherjee R, Zile MR, O'Neill TP, Spinale FG. Selective matrix metalloproteinase inhibition with developing heart failure: Effects on left ventricular function and structure. Circulation Research 2003;92:177–185.

    PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterson, J.T. Matrix Metalloproteinase Inhibitor Development and the Remodeling of Drug Discovery. Heart Fail Rev 9, 63–79 (2004). https://doi.org/10.1023/B:HREV.0000011395.11179.af

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HREV.0000011395.11179.af

Navigation