Skip to main content
Log in

Simulating the fate of subsurface-banded urea

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Compared to surface broadcasting of nitrogen (N), subsurface-banding increases crop yield and N removal, reducing the N amount available for loss into the environment. Subsurface banding results in two-dimensional (2-D) N movement and high localized N concentrations that reduce N transformation rates. A physically-based, field-scale model was developed and tested for its ability to simulate the fate of subsurface-banded N. The 1-D moisture sub-model simulates moisture redistribution, evapotranspiration, and percolation using the Richards equation. Using the convective-dispersive equation, the 2-D N sub-model uniquely simulates the fate of urea, ammonium, and nitrate by accounting for urea particle dissolution rate and substrate concentration effects. Over 325 d, the model displayed robustness with respect to selection of grid sizes and exhibited mathematical accuracy. Analyses highlighted the importance of incorporating substrate concentration effects on N transformations; disregarding substrate concentration effects could result in overestimation of crop N removal and N movement in the soil. Analyses also indicated the importance of including molecular diffusion in simulating the fate of subsurface-banded N. While evapotranspiration, crop N removal, and residual applied inorganic-N estimates appeared realistic, measured and simulated moisture and applied-N amounts and distributions differed greatly. Errors in measurements of moisture and N and uncertainty in parameter estimation likely increased the difference in simulated versus measured values. The model was highly sensitive to soil pH and Freundlich distribution coefficient. Additional model evaluation with field data, though required, could not be performed due to lack of data describing distribution of soil N resulting from subsurface-banding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson J.D. Jr. 1995. Computational Fluid Dynamics: the Basics with Applications. McGraw-Hill, Inc., New York, New York, USA.

    Google Scholar 

  • Breve M.A., Skaggs R.W., Parsons J.E. and Gilliam J.W. 1997. DRAINMOD-N, a nitrogen model for artificially drained soils. Trans. ASAE 40(4): 1067–1075.

    Google Scholar 

  • Carsel R.F. and Parrish R.S. 1988. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res. 24(5): 755–769.

    Google Scholar 

  • Chao G.T. 1967. Urea, its Properties and Manufacture. Chao's Institute, West Covina, California, USA.

  • Chen R.L., Keeney D.R. and Konrad J.G. 1972. Nitrification in sediments of selected Wisconsin lakes. J. Environ. Qual. 1(2): 151–154.

    Google Scholar 

  • D'Angelo E.M. and Reddy K.R. 1993. Ammonium oxidation and nitrate reduction in sediments of a hypereutrophic lake. Soil Sci. Soc. Am. J. 57(4): 1156–1163.

    Google Scholar 

  • Danielson R.E. 1967. Root systems in relation to irrigation. In: Hagan R.M., Haise H.R. and Edminster T.W. (eds), Irrigation of Agricultural Lands, Agronomy No. 11. American Society of Agronomy, Madison, Wisconsin, USA, pp. 390–424.

    Google Scholar 

  • Davidson J.M., Graetz D.A., Rao P.S.C. and Selim H.M. 1978. Simulation of nitrogen movement, transformations, and uptake in plant root zone. EPA-600/3–78–029, U.S. Environmental Protection Agency (USEPA), Athens, Georgia, USA.

    Google Scholar 

  • Feddes R.A., Kowalik P.J., Zaradny H. 1978. Simulation of Field Water Use and Crop Yield. John Wiley and Sons, New York, New York, USA.

    Google Scholar 

  • Freeze R.A. and Cherry J.A. 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA.

    Google Scholar 

  • Harris W.G., Iyenger S.S., Zelazny L.W., Parker J.C., Lietzke D.A. and Edmonds W.J. 1980. Mineralogy of a chronosequence formed in New River alluvium. Soil Sci. Soc. Am. J. 44(4): 862–868.

    Google Scholar 

  • Haverkamp R., Vauclin M., Touma J., Wierenga P.J. and Vachaud G. 1977. A comparison of numerical simulation models for one-dimensional infiltration. Soil Sci. Soc. Am. J. 41(2): 285–294.

    Google Scholar 

  • Hillel D. 1971. Soil and Water: Physical Principles and Processes. Academic Press, New York, USA.

    Google Scholar 

  • James D.L. and Burges S.J. 1982. Selection, calibration, and testing of hydrologic models. In: Haan C.T. (ed.), Hydrologic Modeling of Small Watersheds. ASAE, St. Joseph, Michigan, USA, pp. 437–472.

    Google Scholar 

  • Jensen M.E., Burman R.D. and Allen R.G. (eds( 1990. Evapotranspiration and Irrigation Water Requirements, ASCE Manuals and Reports on Engineering Practice No. 70. ASCE, New York, New York, USA.

  • Kaluarachchi J.J. and Parker J.C. 1988. Finite element model for nitrogen species transformation and transport in the unsaturated zone. J. Hydrol. 103: 249–274.

    Google Scholar 

  • Lafolie F., Bruckler L., de Cockborne A.M. and Laboucarie C. 1997. Modeling the water transport and nitrogen dynamics in irrigated salad crops. Irrig. Sci. 17(3): 95–104.

    Google Scholar 

  • Lal R.B., Kissel D.E., Cabrera M.L. and Schwab A.P. 1993. Kinetics of urea hydrolysis in wheat residue. Soil Biol. Biochem. 25(8): 1033–1036.

    Google Scholar 

  • Lehrsch G.A., Sojka R.E. and Westermann D.T. 2001. Furrow irrigation and N management strategies to protect water quality. Commun. Soil Sci. Plant Anal. 32(7/8): 1029–1050.

    Google Scholar 

  • Ling G. and El-Kadi A.I. 1998. A lumped parameter model for nitrogen transformation in the unsaturated zone. Water Resour. Res. 34(2): 203–212.

    Google Scholar 

  • Novotny V. and Olem H. 1993. Water Quality: Prevention, Identification, and Management of Diffuse Pollution. Van Nostrand Reinhold, New York, New York, USA.

    Google Scholar 

  • Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T. 1989. Numerical Recipes: The Art of Scientific Computing (Fortran version(. Cambridge University Press, New York, New York, USA.

    Google Scholar 

  • Raczkowski C.W. and Kissel D.E. 1989. Fate of subsurface-banded and broadcast nitrogen applied to tall fescue. Soil Sci. Soc. Am. J. 53(2): 566–570.

    Google Scholar 

  • Raynes R.J. 1986. Mineral Nitrogen in the Soil-Plant System. Academic Press, Orlando, Florida, USA.

    Google Scholar 

  • Remson I., Hornberger G.M. and Molz F.J. 1971. Numerical Methods in Subsurface Hydrology with an Introduction to the Finite Element Method. Wiley-Interscience, New York, New York, USA.

    Google Scholar 

  • Richards L.A. 1931. Capillary conduction through porous mediums. Physics 1: 313–318.

    Google Scholar 

  • Rosenthal W.D., Kanemasu E.T., Raney R.J. and Stone L. R. 1977. Evaluation of an evapotranspiration model for corn. Agron. J. 69(3): 461–464.

    Google Scholar 

  • Ryan P.A. and Cohen Y. 1990. Diffusion of sorbed solutes in gas and liquid phases of low-moisture soils. Soil Sci. Soc. Am. J. 54(2): 341–346.

    Google Scholar 

  • Saxton K.E., Johnson H.P. and Shaw R.H. 1974. Modeling evapo-transpiration and soil moisture. Trans. ASAE 17(4): 673–677.

    Google Scholar 

  • SCS 1985. Soil Survey of Montgomery County, Virginia. U.S. Department of Agriculture (USDA(-Soil Conservation Service (SCS), Richmond, Virginia, USA.

  • Selim H.M. and Iskandar I.K. 1981. Modeling nitrogen transport and transformations in soils: 1. Theoretical considerations. Soil Sci. 131(4): 233–241.

    Google Scholar 

  • Shaffer M.J., Rojas K., DeCoursey D.G. and Hebson C.S. 1992. Summary Documentation for OMNI, the Organic Matter/NItrogen Cycling Component of the Root Zone Water Quality Model (RZWQM(. Research Report, Great Plains Systems Research Unit, USDA-Agricultural Research Service (ARS), Ft. Collins, Colorado, USA.

  • Shah S.B. 2000. Agronomic and water quality impacts of pelletized versus granular urea. Ph.D. Thesis, Virginia Tech, USA. (URL: http://scholar.lib.vt.edu/theses/available/etd-10062000–15170004/unrestricted/etd.pdf)

  • Shah S.B. and Wolfe M.L. 2002. Nitrate leaching impacts of urea pellets versus urea granules. Appl. Eng. Agric. 18(1): 57–64.

    Google Scholar 

  • Shah S.B. and Wolfe M.L. 2003. Particle size impacts of subsur-face-banded urea on nitrogen transformation in the laboratory. Commun. Soil Sci. Plant Anal. 34(9/10): 1245–1260.

    Google Scholar 

  • Simunek J., Sejna M. and van Genuchten M.Th. 1999. The HY-DRUS-2D software Package for Simulating Two-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Ver. 2.0. U.S. Salinity Laboratory, Riverside, California, USA.

  • Singh K.G. and Sondhi S.K. 2001. Validation of a fertilizer nitrogen model during crop production. J. Agric. Eng. Res. 78(3): 317–324.

    Google Scholar 

  • Singh R. and Nye P.H. 1984. Diffusion of urea, ammonium and soil alkalinity from surface applied urea. J. Soil Sci. 35(4): 529–538.

    Google Scholar 

  • Singh Y., Malhi S.S., Nyborg M.M. and Beauchamp E.G. 1994. Large granules, nest or bands: methods of increasing efficiency of fall-applied urea for cereal grains in North America. Fert. Res. 38(1): 61–97.

    Google Scholar 

  • SERCC (Southeast Regional Climate Center) 2000. South Carolina Department of Natural Resources, Water Resources Division, Columbia, South Carolina, USA.

  • Storm D.E., Dillaha III T.A., Mostaghimi S. and Shanholtz V.O. 1988. Modeling phosphorus transport in surface runoff. Trans. ASAE 31(1): 117–127.

    Google Scholar 

  • Tabatabai M.A. 1982. Soil enzymes. In: Page A.L. (ed.), Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, Agronomy 9. ASA-SSSA, Madison, Wisconsin, USA, pp. 903–948.

  • Tabatabai M.A. 1973. Michaelis constants of urease in soils and soil fractions. Soil Sci. Soc. Am. Proc. 37(5): 707–710.

    Google Scholar 

  • Tisdale S.L., Nelson W.L., Beaton J.D. and Havlin J.L. 1993. Soil Fertility and Fertilizers. Macmillan Publishing Company, New York, New York, USA.

    Google Scholar 

  • USDA-SCS 1984. User's Guide for the CREAMS Computer Model. USDA, Washington, DC, USA.

    Google Scholar 

  • van Genuchten M. Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5): 892–898.

    Google Scholar 

  • van Genuchten M.Th., Leij F.J. and Yates S.R. 1991. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils, EPA/600/2–91/065. USDA, ARS, Riverside, California, USA.

    Google Scholar 

  • Wagenet R.J., Biggar J.W. and Nielsen D.R. 1977. Tracing the transformations of urea fertilizer during leaching. Soil Sci. Soc. Am. J. 41: 896–902.

    Google Scholar 

  • Wetselaar R. 1985. Deep point-placed urea in flooded soil. In: Proceedings of Workshop on Urea Deep Placement Technology, Spec. Pub. 6. International Fertilizer Development Center, Muscle Shoals, Alabama, USA, pp. 7–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.B. Shah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, S., Wolfe, M. & Borggaard, J. Simulating the fate of subsurface-banded urea. Nutrient Cycling in Agroecosystems 70, 47–66 (2004). https://doi.org/10.1023/B:FRES.0000045983.33883.37

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FRES.0000045983.33883.37

Navigation