Skip to main content
Log in

Inheritance of progoitrin and total aliphatic glucosinolates in oilseed rape (Brassica napus L)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Inheritance of progoitrin and total aliphatic glucosinolate concentrations were investigated in oilseed rape, using parental, F1, F2 and first backcross generations, derived from a cross between resynthesized spring rape and a double-low spring rape cultivar. Progoitrin and total aliphatic glucosinolate concentrations were measured in mature seeds of single plants from these generations, using micellar electrokinetic capillary chromatography. For progoitrin, an additive/dominance model of gene action adequately explained the variation among the generation means, but for total aliphatic glucosinolate concentration, non-allelic interactions were also detected. Predictions based on estimates of the genetic parameters indicated that recombinant inbred lines, rather than second cycle hybrids, appeared to offer a better prospect of reducing glucosinolate concentrations in this material. Estimates of the minimum number of genes controlling these two characters were broadly in line with the number required for the known stages of their biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagger, C.L., H. Sørensen & J.C. Sørensen, 1998. High quality oils, proteins and bioactive products for food and non-food purposes based on biorefining of cruciferous oilseed crops. In: J. Gueguen & Y. Popineau (Eds.), Plant Proteins from European Crops. Food and Non-Food Applications, pp. 272-278. Springer Verlag, Berlin, Heidelberg and New York.

    Google Scholar 

  • Bennett, R.N., A.J. Hick, G.W. Dawson & R.M. Wallsgrove, 1995. Glucosinolate biosynthesis. Further characterisation of the aldoxime-forming microsomal monooxygenases in oilseed rape leaves. Plant Physiol 109: 299-305.

    PubMed  CAS  Google Scholar 

  • Bjerg, B., P.W. Kachlicki, L.M. Larsen & H. Sørensen, 1987a. Metabolism of glucosinolates. Proc. 7th Int. Rapeseed Congress, Poznan Poland, I, 2: 496-506.

    Google Scholar 

  • Bjerg, B., L.M. Larsen & H. Sørensen, 1987b. Reliability of analytical methods for quantitative determination of individual glucosinolates and total glucosinolate content in double low oilseed rape. Proc. 7th Int. Rapeseed Congress, Poznan Poland, IV, 6: 1330-1341.

    Google Scholar 

  • Bjerg, B., B.O. Eggum, I. Jacobsen, J. Otte & H. Sørensen, 1989. Antinutritional and toxic effects in rats of individual glucosinolates (± myrosinases) added to a standard diet (2). Zeitschr Tierphysiol, Tierernährung u Futtermittel-kd 61: 227-244.

    CAS  Google Scholar 

  • Bjergegaard, C., P.W. Li, S. Michaelsen, P. Møller, J. Otte & H. Sørensen, 1994. Glucosinolates and their transformation products-compounds with a broad biological activity. Bioactive Subst Food Plant Origin 1: 1-15.

    Google Scholar 

  • Buskov, S., J. Hasselstrøm, C.E. Olsen, H. Sørensen, J.C. Sørensen, & S. Sørensen, 2000a. Supercritical Fluid Chromatography as a method of analysis for the determination of 4-hydroxybenzylglucosinolate degradation products. J Biochem Biophys Methods 43: 157-174.

    Article  PubMed  CAS  Google Scholar 

  • Buskov, S., L.B. Hansen, C.E. Olsen, H. Sørensen & J.C. Sørensen, 2000b. Determination of ascorbigens in autolysates of various Brassica species using supercritical fluid chromatography. J Food Agric Chem 48: 2693-2701.

    Article  CAS  Google Scholar 

  • Chapple, C.C.S., J.R. Glover & B.E. Ellis, 1990. Purification and characterization of methionine: glyoxylate aminotransferase from Brassica carinata and Brassica napus. Plant Physiol 94: 1887-1896.

    PubMed  CAS  Google Scholar 

  • Chen, B.Y., W.K. Heneen & R. Jönsson, 1989. Resynthesis of Brassica napus L. through interspecific hybridization between B. alboglabra ‘Bailey’ and B. campestris L. with special emphasis on seed colour. Plant Breed 101: 52-59.

    Article  Google Scholar 

  • Chisholm, M.D. & L.R. Wetter, 1967. The biosynthesis of some isothiocyanates and oxazolidinethiones in rape (Brassica campestris L.). Plant Physiol 42: 1726-1730.

    PubMed  CAS  Google Scholar 

  • Dalgaard, L., R. Nawaz & H. Sørensen, 1977. 3-Methylthiopropylamine and (R)-3-methylsulphinylpropylamine in Iberis amara. Phytochemistry 16: 931-932.

    Article  CAS  Google Scholar 

  • De Toledo, J.F.F., H.S. Pooni & J.L. Jinks, 1984. Predicting the properties of second cycle hybrids by intercrossing random samples of recombinant inbred lines. Heredity 53: 283-292.

    PubMed  Google Scholar 

  • Diers, B.W. & T.C. Osborn, 1994. Genetic diversity of oilseed Brassica napus germplasm based on restriction fragment length polymorphisms. Theor Appl Genet 88: 662-668.

    Article  Google Scholar 

  • Ettlinger, M.G. & A. Kjær, 1968. Sulfur compounds in plants. In: T.J. Mabry, R.E. Alston & V.C. Runeckles (Eds.), Recent Advances in Phytochemistry, Vol. 1, pp. 59-144. Appleton-Century-Craft, New York.

    Google Scholar 

  • Finlayson, A.J., J. Krzymanski & R.K. Downey, 1973. Comparison of chemical and agronomic characteristics of two Brassica napus L. cultivars, ‘Bronowski’ and ‘Target’. J Am Oil Chem Soc 50: 407-410.

    PubMed  CAS  Google Scholar 

  • Giamoustaris, A. & R. Mithen, 1996. Genetics of aliphatic glucosinolates. IV. Side chain modification in Brassica oleracea. Theor Appl Genet 93: 1006-1010.

    Article  CAS  Google Scholar 

  • Glendening, T.M. & J.E. Poulton, 1988. Glucosinolate biosynthesis. Sulfation of desulfobenzylglucosinolate by cell-free extracts of cress (Lepidium sativum L.) seedlings. Plant Physiol 86: 319-321.

    PubMed  CAS  Google Scholar 

  • Glendening, T.M. & J.E. Poulton, 1990. Partial purification and characterization of a 3'-phosphoadenosine-5'-phosphosulfate: desulfoglucosinolate sulfotransferase from cress (Lepidium sativum). Plant Physiol 94: 811-818.

    PubMed  CAS  Google Scholar 

  • Groot Wassink, J.W.D., D.W. Reed & A.D. Kolenoosky, 1994. Immunopurification and immuno-characterisation of the glucosinolate biosynthetic enzyme thiohydroximide-S-glucosyltransferase. Plant Physiol 105: 425-433.

    CAS  Google Scholar 

  • Hall, C., D. McCallum, A. Prescott & R. Mithen, 2001. Biochemical genetics of glucosinolate modification in Arabidopsis and Brassica. Theor Appl Genet 102: 369-374.

    Article  CAS  Google Scholar 

  • Hansen, M., A.M. Laustsen, C.E. Olsen, L. Poll & H. Sørensen, 1997. Chemical and sensory quality of broccoli (Brassica oleracea L. var. italica). J Food Quality 20: 441-459.

    CAS  Google Scholar 

  • Haughn, G.W., L. Davin, M. Giblin & E.W. Underhill, 1991. Biochemical genetics of plant secondary metabolies in Arabidopsis thaliana. The glucosinolates. Plant Physiol 97: 217-226.

    Article  PubMed  CAS  Google Scholar 

  • Hill, J., H.C. Becker & P.M.A. Tigerstedt, 1998. Quantitative and Ecological Aspects of Plant Breeding. Chapman & Hall, London and New York.

    Google Scholar 

  • Jain, J.C., J.W. Groot Wassink, D.W. Reed & E.W. Underhill, 1989. A radioassay of enzymes catalyzing the glucosylation and sulfation steps of glucosinolate biosynthesis in Brassica species. Analyt Biochem 178: 137-140.

    Article  PubMed  CAS  Google Scholar 

  • Jain, J.C., J.W. Groot Wassink, D.W. Reed & E.W. Underhill, 1990. Persistent copurification of enzymes catalyzing the sequential glucosylation and sulfation steps in glucosinolate biosynthesis. J Plant Physiol 136: 356-361.

    CAS  Google Scholar 

  • Jinks, J.L. & J.M. Perkins, 1972. Predicting the range of inbred lines. Heredity 28: 399-403.

    PubMed  CAS  Google Scholar 

  • Krähling, K., G. Röbbelen, W. Thies, M. Herrmann & M.R. Ahmadi, 1990. Variation of seed glucosinolates in lines of Brassica napus. Plant Breed 105: 33-39.

    Article  Google Scholar 

  • Lethenborg, P., P.W. Li, H. Sørensen, J. Hill, O. Stølen, M.H. Rahman & M.H. Poulsen, 1995. Inheritance of glucosinolates in oilseed rape. Proc. 9th Int. Rapeseed Congress (GCIRC), Cambridge, 3: G-10, pp. 726-728.

    Google Scholar 

  • Magrath, R., C. Herron, A. Giamoustaris & R. Mithen, 1993. The inheritance of aliphatic glucosinolates in Brassica napus. Plant Breed 111: 55-72.

    Article  CAS  Google Scholar 

  • Mather, K. & J.L. Jinks, 1982: Biometrical Genetics, 3rd edn. Chapman & Hall, London and New York.

    Google Scholar 

  • Matsuo, M. & Underhill, E.W., 1971. Purification and properties of a UDP-glucose: thiohydroximate glucosyltransferase from higher plants. Phytochemistry 10: 2279-2286.

    Article  CAS  Google Scholar 

  • Mithen, R.F. & H. Campos-de-Quinoz 1997. Biochemical genetics of aliphatic glucosinolates. Acta Horticulturae 459: 373-377.

    Google Scholar 

  • Prakash, S. & K. Hinata, 1980. Taxonomy, cytogenetics and origin of crop Brassicas, a review. Opera Botanica 55: 1-57.

    Google Scholar 

  • Röbbelen, G., 1960. Beiträge zur Analyse des Brassica-Genoms. Chromosoma 11: 205-228.

    Article  Google Scholar 

  • Rücker, B., 1993. Genetische Analyse von Qualitäts-und Ertragsmerkmalen bei Winterraps (Brassica napus L.) unter besonderer Berücksichtigung des Glucosinolatgehaltes der Samen. Ph.D. Thesis, University of Göttingen, Germany.

    Google Scholar 

  • Rücker, B. & G. Röbbelen, 1994. Inheritance of total and individual glucosinolate contents in seeds of winter oilseed rape (Brassica napus L.). Plant Breed 113: 206-216.

    Article  Google Scholar 

  • Sørensen, H., 1990. Glucosinolates: Structure-Properties-Function. In: F. Shahidi (Ed.), Rapeseed/Canola: Production, Chemistry, Nutrition and Processing Technology, pp. 149-172. Van Nostrand Reinhold.

  • Sørensen, H., S. Sørensen, C. Bjergegaard & S. Michaelsen, 1999. Chromatography and Capillary Electrophoresis in Food Analysis. The Royal Society of Chemostry, Cambridge, UK.

    Google Scholar 

  • Toroser, D., C.E. Thormann, T.C. Osborn & R. Mithen, 1995. RFLP mapping of quantitative trait loci controlling seed aliphaticglucosinolate content in oilseed rape (Brassica napus L.). Theor Appl Genet 91: 802-808.

    Article  CAS  Google Scholar 

  • Underhill, E.W., M.D. Chisholm & L.R. Wetter, 1962. Biosynthesis of mustard oil glucosides. I. Administration of C14-labelled compounds to horseradish, nasturtium and watercress. Can J Biochem Physiol 40: 1505-1514.

    PubMed  CAS  Google Scholar 

  • Underhill, E.W., L.R. Wetter & M.D. Chisholm, 1973. Biosynthesis of glucosinolates. Biochem Soc Symp 38: 303-326.

    Google Scholar 

  • Uzunova, M., W. Ecke, K. Weissleder & G. Röbbelen, 1995. Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90: 194-204.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, J., Lethenborg, P., Li, P. et al. Inheritance of progoitrin and total aliphatic glucosinolates in oilseed rape (Brassica napus L). Euphytica 134, 179–187 (2003). https://doi.org/10.1023/B:EUPH.0000003857.57573.2f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:EUPH.0000003857.57573.2f

Navigation