Skip to main content
Log in

Smaller Effective Population Sizes Evidenced by Loss of Microsatellite Alleles in Tributary-Spawning Populations of Sockeye Salmon from the Kvichak River, Alaska drainage

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

We tested signals of historical reductions in effective population size within populations of sockeye salmon Oncorhynchus nerka returning to Bristol Bay, Alaska, to examine the roles that ecotype, migration obstacles, and drainage might play in the highly variable production of the Kvichak River drainage. We collected data for eight microsatellite loci from ∼100 fish at each of 16 locations within the Kvichak River drainage and five locations within the more productively stable Naknek River drainage. Pair-wise exact tests were used to group similar collections within ecotype, within drainage, and above and below migration obstacles. After grouping, collections represented independent populations for further analyses. We examined the number of alleles per locus, mean ratio of the number of alleles to the range in allele size, heterozygosity excess, and gametic disequilibrium as measures of reduction-in-population-size events. Number of alleles per locus revealed the largest number of significant differences. Tributary populations showed a stronger signal consistent with reduced effective population size than did beach populations within the Kvichak River drainage. Kvichak River drainage populations showed a stronger signal consistent with reduced effective population size than did the Naknek River drainage populations. Populations above migration obstacles showed signals consistent with reduction in historical population sizes in multiple measures indicating some of these reductions may be severe enough to qualify as demographic bottlenecks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allendorf, F.W. 1986. Genetic drift and the loss of alleles versus heterozygosity. Zool. Biol. 5: 181–190.

    Google Scholar 

  • Allendorf, F.W. & L.W. Seeb. 2000. Concordance of genetic divergence among sockeye salmon populations at allozyme, nuclear DNA, and mitochondrial DNA markers. Evolution 54: 640–651.

    CAS  Google Scholar 

  • Bentzen, P., J.B. Olsen, J.E. McLean, T.R. Seamons & T.P. Quinn. 2001. Kinship analysis of Pacific salmon: Insights into mating, homing, and timing of reproduction. J. Hered. 92: 127–136.

    Article  CAS  Google Scholar 

  • Blair, G.R., D.E. Rogers & T.P. Quinn. 1993. Variation in life history characteristics and morphology of sockeye salmon in the Kvichak River system, Bristol Bay, Alaska. Trans. Am. Fish. Soc. 122: 550–559.

    Article  Google Scholar 

  • Chakraoborty, R. & O. Leimar. 1987. Genetic variation within a subdivided population. pp. 89–120. In: N. Ryman & R. Utter (ed.) Population Genetics and Fishery Management, University of Washington Press, Seattle.

    Google Scholar 

  • Cornuet, J.M. & G. Luikart. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001–2014.

    CAS  Google Scholar 

  • Forester, R.E. 1968. The sockeye salmon, Oncorhynchus nerka. Fish. Res. Board Can. Bull. 162: 422 pp.

  • Frankham, R. 1995. Effective population size/adult population size ratios in wildlife: A review. Genet. Res. 66: 95–107.

    Google Scholar 

  • Garza, J.C. & E.G. Williamson. 2001. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10: 305–318.

    Article  CAS  Google Scholar 

  • Geiger, H.J., W.W. Smoker, L.A. Zhivotovsky & A.J. Gharrett. 1997. Variability of family size and marine survival in pink salmon (Oncorhynchus gorbuscha) has implications for conservation biology and human use. Can. J. Fish. Aquat. Sci. 54: 2684–2690.

    Article  Google Scholar 

  • Goudet, J., M. Raymond, T. de Meeus & F. Rousset. 1996. Testing differentiation in diploid populations. Genetics 144: 1933–1940.

    CAS  Google Scholar 

  • Heath, D.D., C. Busch, J. Kelly & D.Y. Atagi. 2002. Temporal change in genetic structure and effective population size in steelhead trout (Oncorhynchus mykiss). Mol. Ecol. 11: 197–214.

    Article  CAS  Google Scholar 

  • Hendry, A.P., F.E. Leonetti & T.P. Quinn. 1995. Spatial and temporal isolating mechanisms-the formation of discrete breeding aggregations of sockeye salmon (Oncorhynchus nerka). Can. J. Zool. 73: 339–352.

    Google Scholar 

  • Leberg, P.L. 2002. Estimating allelic richness: Effects of sample size and bottlenecks. Mol. Ecol. 11: 2445–2449.

    Article  CAS  Google Scholar 

  • Leonetti, F.E. 1997. Estimation of surface and intragravel water flow at sockeye salmon spawning beaches in Iliamna Lake, Alaska. N. Am. J. Fish. Manag. 17: 194–201.

    Google Scholar 

  • Luikart, G., F.W. Allendorf, J.-M. Cornuet & W.B. Sherwin. 1998. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89: 238–247.

    Article  CAS  Google Scholar 

  • Nei, M., T. Maruyama & R. Chakraborty. 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1–10.

    Google Scholar 

  • Olsen, J.B., S.L.Wilson, E.J. Kretschmer, K.C. Jones & J.E. Seeb. 2000. Characterization of 14 tetranucleotide microsatellite loci derived from sockeye salmon. Mol. Ecol. 9: 2185–2287.

    CAS  Google Scholar 

  • Olsen, J.B., C. Habicht & J.E. Seeb. 2004. Moderately and highly polymorphic microsatellites provide discordant estimates of population divergence in sockeye salmo, Oncorhynchus nerka. Environ. Biol. Fish. 69: 261–273.

    Article  Google Scholar 

  • Pimm, S.L., J.L. Gittleman & G.F. McCracken. 1989. Plausible alternatives to bottlenecks to explain reduced genetic diversity. Trends Ecol. Evol. 4: 176–178.

    Article  Google Scholar 

  • Quinn, T.P. & M.T. Kinnison. 1999. Size-selective and sexselective predation by brown bears on sockeye salmon. Oecologia 121: 273–282.

    Article  Google Scholar 

  • Raymond, M. & F. Rousset. 1995. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86: 248–249.

    Google Scholar 

  • Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution 4: 223–225.

    Google Scholar 

  • Rousset, F. & M. Raymond. 1995. Testing heterozygote excess and deficiency. Genetics 140: 1413–1419.

    CAS  Google Scholar 

  • Seeb, L.W., C. Habicht, W.D. Templin, K.E. Tarbox, R.Z. Davis, L.K. Brannian & J.E. Seeb. 2000. Genetic diversity of sockeye salmon of Cook Inlet, Alaska, and its application to management of populations affected by the Exxon Valdez oil spill. Trans. Am. Fish. Soc. 129: 1223–1249.

    Article  Google Scholar 

  • Selifonov, M.M. 1987. Influence of environment on the abundance of sockeye salmon (Oncorhynchus nerka) from the Ozernaya and Kamchatka Rivers. pp. 125–128. In: H.D. Smith, L. Margolis & C.C. Wood (ed.) Sockeye Salmon (Oncorhynchus nerka) Population Biology and Future Management, Can. Spec. Publ. Fish. Aquat. Sci. 96.

  • Smouse, P.E. & J.V. Neel. 1977. Multivariate analysis of gametic disequilibrium in the Yanomama. Genetics 85: 733–752.

    CAS  Google Scholar 

  • Spencer, C.C., J.E. Neigel & P.L. Leberg. 2000. Experimental evaluation of the usefulness of microsatelliteDNAfor detecting demographic bottlenecks. Mol. Ecol. 9: 1517–1528.

    CAS  Google Scholar 

  • Spong, G. & L. Hellborg. 2002. A near-extinction in lynx: Do microsatellite data tell the tale? Conservation Ecology 6: 15 [online] URL: http://www.consecol.org/vol6/iss1/art15.

    Google Scholar 

  • Waldick, R.C., S. Kraus, M. Brown & B.N. White. 2002. Evaluating the effects of historic bottleneck events: An assessment of microsatellite variability in the endangered, North Atlantic right whale. Mol. Ecol. 11: 2241–2249.

    Article  CAS  Google Scholar 

  • Waples, R.S. 1990. Conservation genetics of Pacific salmon. II. Effective population size and the rate of loss of genetic variability. J. Hered. 81: 267–276.

    Google Scholar 

  • Waples, R.S. & P.E. Smouse. 1990. Gametic disequilibrium analysis as a means of identifying mixtures of salmon populations. Am. Fish. Soc. Symp. 7: 439–458.

    Google Scholar 

  • Withler, R.E., K.D. Le, R.J. Nelson, K.M. Miller & T.D. Beacham. 2000. Intact genetic structure and high levels of genetic diversity in bottlenecked sockeye salmon (Oncorhynchus nerka) populations of the Fraser River, British Columbia, Canada. Can. J. Fish. Aquat. Sci. 57: 1985–1998.

    Article  Google Scholar 

  • Wood, C.C. 1995. Life history variation and population structure in sockeye salmon. Am. Fish. Soc. Symp. 17: 195–216.

    Google Scholar 

  • Wright, S. 1978. Evolution and the Genetics of Populations. Volume 4: Variability Within and Among Natural Populations, The University of Chicago Press, Ltd, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habicht, C., Olsen, J.B., Fair, L. et al. Smaller Effective Population Sizes Evidenced by Loss of Microsatellite Alleles in Tributary-Spawning Populations of Sockeye Salmon from the Kvichak River, Alaska drainage. Environmental Biology of Fishes 69, 51–62 (2004). https://doi.org/10.1023/B:EBFI.0000022887.62009.54

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:EBFI.0000022887.62009.54

Navigation