Skip to main content
Log in

Cloning, characterization and localization of Chinese hamster HP1 isoforms

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The Chinese hamster is one of the few mammalian species that are characterized by relatively poor heterochromatin content. It was intriguing to test whether or not the lack of large blocks of heterochromatin in the hamster chromosomes could be correlated with the absence or species-specific differences of the HP1 proteins, the main structural components of heterochromatin. To address this, we attempted to clone HP1 from the Chinese hamster. It is shown here that all three isoforms of HP1 known in mammals are present in hamster, and the amino acid sequences deduced from the cDNAs of the isoforms are 97–100% identical to those of the known mammalian homologues. All three isoforms are localized mainly in heterochromatic regions in the native chromosomes and nuclei. The hamster HP1α gene was cloned, sequenced and mapped to the short arm of hamster chromosome 2.

These data indicate that the Chinese hamster has all the HP1 components necessary for the establishment of heterochromatin. The limited amount of heterochromatin in hamster cells may probably be attributed to the unusual satellite DNA content of the hamster genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aasland R, Stewart AF (1995) The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, HP1. Nucleic Acids Res 23: 3168–3174.

    PubMed  CAS  Google Scholar 

  • Arrighi FE, Hsu TC, Pathak S, Sawada H (1974) The sex chromosomes of the Chinese hamster: constitutive heterochromatin deficient in repetitive DNA sequences. Cytogenet Cell Genet 13: 268–274.

    PubMed  CAS  Google Scholar 

  • Ball LJ, Murzina NV, Broadhurst RW et al. (1997) Structure of the chromatin binding (chromo) domain from mouse modifier protein 1. EMBO J 16: 2473–2481.

    Article  PubMed  CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF et al. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120-124.

  • Brasher SV, Smith BO, Fogh RH et al. (2000) The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J 19: 1587–1597.

    Article  PubMed  CAS  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81: 1991–1995.

    Article  PubMed  CAS  Google Scholar 

  • Csonka E, Cserpán I, Fodor K et al. (2000) Novel generation of human satellite DNA-based artificial chromosomes in mammalian cells. J Cell Sci 113: 3207–3216.

    PubMed  CAS  Google Scholar 

  • deJong G, Telenius AH, Telenius H, Perez CF, Drayer JI, Hadlaczky G (1999) Mammalian artificial chromosome pilot production facility: large-scale isolation of functional satellite DNA-based artificial chromosomes. Cytometry 35: 129–133.

    Article  PubMed  CAS  Google Scholar 

  • Eissenberg JC, Elgin SC (2000) The HP1 protein family: getting a grip on chromatin. Curr Opin Genet Dev 10: 204–210.

    Article  PubMed  CAS  Google Scholar 

  • Faravelli M, Moralli D, Bertoni L et al. (1998) Two extended arrays of a satellite DNA sequence at the centromere and at the short-arm telomere of Chinese hamster chromosome 5. Cytogenet Cell Genet 83: 281–286.

    Article  PubMed  CAS  Google Scholar 

  • Fátyol K, Cserpán I, Praznovszky T, Keres? J, Hadlaczky G (1994) Cloning and molecular characterization of a novel chromosome specific centromere sequence of Chinese hamster. Nucleic Acids Res 22: 3728–3736.

    PubMed  Google Scholar 

  • Furuta K, Chan EK, Kiyosawa K, Reimer G, Luderschmidt C, Tan EM (1997) Heterochromatin protein HP1Hsbeta (p25beta) and its localization with centromeres in mitosis. Chromosoma 106: 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Gamperl R, Vistorin G, Rosenkranz W (1976) A comparative analysis of the karyotypes of Cricetus cricetus and Cricetus griseus. Chromosoma 55: 259–265.

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa T, Haraguchi T, Masumoto H, Hiraoka Y (2003) Cell cycle behavior of human HP1 subtypes: distinct molecular domains of HP1 are required for their centromeric localization during interphase and metaphase. J Cell Sci 116: 3327–3338.

    Article  PubMed  CAS  Google Scholar 

  • Horsley D, Hutchings A, Butcher GW, Singh PB (1996) M32, a murine homologue of Drosophila heterochromatin protein 1 (HP1), localises to euchromatin within interphase nuclei and is largely excluded from constitutive heterochromatin. Cytogenet Cell Genet 73: 308–311.

    PubMed  CAS  Google Scholar 

  • Hsu TC, Benirschke K (1967) An Atlas of Mammalian Chromosomes, Volume 1, Folio 13. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • James TC, Elgin SC (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6: 3862–3872.

    PubMed  CAS  Google Scholar 

  • James TC, Eissenberg JC, Craig C, Dietrich V, Hobson A, Elgin SC (1989) Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur J Cell Biol 50: 170–180.

    PubMed  CAS  Google Scholar 

  • Keres? J, Praznovszky T, Cserpán I (1996) De novo chromosome formations by large-scale amplification of the centromeric region of mouse chromosomes. Chromosome Res 4: 226–239.

    Article  Google Scholar 

  • Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–120.

    Article  PubMed  CAS  Google Scholar 

  • Le Douarin B, Nielsen AL, Garnier JM et al. (1996) A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J 15: 6701–6715.

    PubMed  CAS  Google Scholar 

  • Minc E, Allory Y, Worman HJ, Courvalin JC, Buendia B (1999) Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108: 220–234.

    Article  PubMed  CAS  Google Scholar 

  • Minc E, Courvalin JC, Buendia B (2000) HP1 gamma associates with euchromatin and heterochromatin in mammalian nuclei and chromosomes. Cytogenet Cell Genet 90: 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Minc E, Allory Y, Courvalin JC, Buendia B (2001) Immunolocalization of HP1 proteins in metaphasic mammalian chromosomes. Methods Cell Sci 23: 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292: 110–113.

    Article  PubMed  CAS  Google Scholar 

  • Nicol L, Jeppesen P (1994) Human autoimmune sera recognize a conserved 26kD protein associated with mammalian heterochromatin that is homologous to heterochromatin protein 1 of Drosophila. Chromosome Res 2: 245–253.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen AL, Ortiz JA, You J et al. (1999) Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. EMBO J 18: 6385–6395.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen PR, Nietlispach D, Mott HR et al. (2002) Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416: 103–107.

    Article  PubMed  CAS  Google Scholar 

  • Ouspenski II, Brinkley BR (1993) Centromeric DNA cloned from functional kinetochore fragments in mitotic cells with unreplicated genomes. J Cell Sci 105: 359–367.

    PubMed  CAS  Google Scholar 

  • Paro R, Hogness DS (1991) The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc Natl Acad Sci USA 88: 263–267.

    Article  PubMed  CAS  Google Scholar 

  • Saffery R, Earle E, Irvine DV, Kalitsis P, Choo KH (1999) Conservation of centromere protein in vertebrates. Chromosome Res 7: 261–265.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Saunders WS, Chue C, Goebl M et al. (1993) Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity. J Cell Sci 104: 573–582.

    PubMed  Google Scholar 

  • Singh PB, Miller JR, Pearce J et al. (1991) A sequence motif found in a Drosophila heterochromatin protein is conserved in animals and plants. Nucleic Acids Res 19: 789–794.

    PubMed  CAS  Google Scholar 

  • Smothers JF, Henikoff S (2001) The hinge and chromo shadow domain impart distinct targeting of HP1-like proteins. Mol Cell Biol 21: 2555–2569.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K, Tasaka H, Dotsu M (2001) Molecular behavior in living mitotic cells of human centromere heterochromatin protein HPLalpha ectopically expressed as a fusion to red fluorescent protein. Cell Struct Funct 26: 705–718.

    Article  PubMed  CAS  Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75: 304–306.

    Article  PubMed  CAS  Google Scholar 

  • Sumner AT (1994) Functional aspects of the longitudinal differentiation of chromosomes. Eur J Histochem 38: 91–109.

    PubMed  CAS  Google Scholar 

  • Wreggett KA, Hill F, James PS, Hutchings A, Butcher GW, Singh PB (1994) A mammalian homologue of Drosophila heterochromatin protein 1 (HP1) is a component of constitutive heterochromatin. Cytogenet Cell Genet 66: 99–103.

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Fukuda R, Himeno M, Sugimoto K (1999) Functional domain structure of human heterochromatin protein HP1 (Hsalpha): involvement of internal DNA-binding and C-terminal self-association domains in the formation of discrete dots in interphase nuclei. J Biochem (Tokyo) 125: 832–837.

    CAS  Google Scholar 

  • Ye Q, Worman HJ (1996). Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J Biol Chem 271: 14653–14656.

    Article  PubMed  CAS  Google Scholar 

  • Ye Q, Callebaut I, Pezhman A, Courvalin JC, Worman HJ (1997) Domain-specific interactions of human HP1-type chromodomain proteins and inner nuclear membrane protein LBR. J Biol Chem 272: 14983–14989.

    Article  PubMed  CAS  Google Scholar 

  • Yuhong Li, Dawn A Kirschmann, Lori L Wallrath (2002) Does heterochromatin protein 1 always follow code? Proc Natl Acad Sci USA 99: 16462–16469.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyula Hadlaczky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szakál, B., Cserpán, I., Csonka, E. et al. Cloning, characterization and localization of Chinese hamster HP1 isoforms. Chromosome Res 12, 483–493 (2004). https://doi.org/10.1023/B:CHRO.0000034750.34633.3c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CHRO.0000034750.34633.3c

Navigation