Skip to main content
Log in

Isolation and Growth Characteristics of an EDTA-degrading Member of the α-subclass of Proteobacteria

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A Gram-negative, ethylenediaminetetraacetic acid (EDTA)-degrading bacterium (deposited at the German Culture Collection as strain DSM 9103) utilising EDTA as the only source of carbon, energy and nitrogen was isolated from a mixed EDTA-degrading population that was originally enriched in a column system from a mixture of activated sludge and soil. Chemotaxonomic analysis of quinones, polar lipids and fatty acids allowed allocation of the isolate to the α-subclass of Proteobacteria. 16S rDNA sequencing and phylogenetic analysis revealed highest similarity to the Mesorhizobium genus followed by the Aminobacter genus. However, the EDTA-degrading strain apparently forms a new branch within the Phyllobacteriaceae/Mesorhizobia family. Growth of the strain was rather slow not only on EDTA (μ max=0.05h−1) but also on other substrates. Classical substrate utilisation testing in batch culture suggested a quite restricted carbon source spectrum with only lactate, glutamate, and complexing agents chemically related to EDTA (nitrilotriacetate, iminodiacetate and ethylenediaminedisuccinate) supporting growth. However, when EDTA-limited continuous cultures of strain DSM 9103 were pulsed with fumarate, succinate, glucose or acetate, these substrates were assimilated immediately. Apparently, the strain can use a broader spectrum than indicated by traditional substrate testing techniques. The EDTA species CaEDTA and MgEDTA served as growth substrates of the strain because in the mineral medium employed EDTA was predicted to be mainly present in the form of these two complexes. The bacterium was not able to degrade Fe3+-complexed EDTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alder AC, Siegrist H, Gujer W & Giger W (1990) Behaviour of NTA and EDTA in biological wastewater treatment. Water Res. 24: 733–742

    Google Scholar 

  • Auling G, Busse H-J, Egli T, El-Banna T & Stackebrandt E (1993) Description of the gramnegative, obligately aerobic, nitrilotriacetate (NTA)-utilizing bacteria Chelatobacter heintzii, gen. nov., sp. nov., and Chelatococcus asaccharovorans, gen. nov., sp. nov. Syst. Appl. Microbiol. 16: 104–112

    Google Scholar 

  • BMU: Bundesminister für Umwelt, Naturschutz und Reaktorsicherheit, Germany (1991) Erklärung zur Reduzierung der Gewässerbelastung durch EDTA

  • Bohuslavek J, Payne J, Liu Y, Bolton H & Xun L (2001) Cloning, sequencing, and characterization of a gene cluster involved in EDTA degradation from the bacterium BNC1. Appl. Environ. Microbiol. 67: 688–695

    PubMed  Google Scholar 

  • Bucheli-Witschel M & Egli T (2001) Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiol. Rev. 25: 69–106

    PubMed  Google Scholar 

  • Egli T (1988) (An)aerobic breakdown of chelating agents used in household detergents. Microbiol. Sci. 5: 36–41

    PubMed  Google Scholar 

  • Egli T (1994) Biochemistry and physiology of the degradation of nitrilotriacetic acid and other complexing agents. In: Ratledge C (Ed) Biochemistry of Microbial Degradation (pp 179–195). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Egli T, Weilenmann HU, El-Banna T & Auling G (1988) Gramnegative aerobic, nitrilotriacetate-utilizing bacteria from wastewater and soil. Syst. Appl. Microbiol. 10: 297–305

    Google Scholar 

  • Gardiner J (1976) Complexation of trace metals by ethylenediaminetetraacetic acid (EDTA) in natural waters. Water Res. 10: 507–514

    Google Scholar 

  • Gschwind N (1992) Biologischer Abbau von EDTA in einem Modellabwasser. gwf Wasser Abwasser 133: 546–549

    Google Scholar 

  • Henneken L, Klüner T, Nörtemann B & Hempel DC (1994) Abbau von EDTA mit freien und immobilisierten Bakterien. gwf Wasser Abwasser 135: 354–358

    Google Scholar 

  • Henneken L, Nörtemann B & Hempel DC (1995) Influence of physiological conditions on EDTA degradation. Appl. Microbiol. Biotechnol. 44: 190–197

    Google Scholar 

  • Henneken L, Nörtemann B & Hempel DC (1998) Biological degradation of EDTA: Reaction kinetics and technical approach. J. Chem. Technol. Biotechnol. 73: 144–152

    Google Scholar 

  • Houriet J-P (1996) NTA dans les eaux. Cahier de l'environnement 264. Office fédéral de l'environnement, des forêts et du paysage (OFEFP), Berne, Switzerland

    Google Scholar 

  • Jones PW & Williams DR (2001) Speciation efficiency indices (SEI) and readily-biodegradable indices (RBI) for optimising ligand control of environmental and associated industrial processes. Int. J. Environ. Anal. Chem. 81: 73–88

    Google Scholar 

  • Kaluza U, Klingelhöfer P & Taeger K (1998) Microbial degradation of EDTA in an industrial wastewater treatment plant. Water Res. 32: 2843–2845

    Google Scholar 

  • Kämpfer P, Müller C, Mau M, Neef A, Auling G, Busse H-J, Osborn AM & Stolz A (1999) Description of Pseudoaminobacter gen. nov. with two new species, Pseudoaminobacter salicylatoxidans sp. nov. and Pseudoaminobacter defluvii sp. nov. Int. J. Syst. Bacteriol. 49: 887–897

    PubMed  Google Scholar 

  • Kaämpfer P, Neef A, Salkinoja-Salonen MS & Busse H-J (2002) Chelatobacter heintzii is a later subjective synonym of Aminobacter aminovorans. Int. J. Syst. Evol. Microbiol. 52: 835–839

    PubMed  Google Scholar 

  • Kari FG (1994) Umweltverhalten von Ethylendiamintetraacetat (EDTA) unter spezieller Berücksichtigung des photochemischen Abbaus. PhD thesis No. 10698, Swiss Federal Institute of Technology, Zürich, Switzerland

    Google Scholar 

  • Kari FG & Giger W (1996) Speciation and fate of ethylenediaminetetraacetate (EDTA) in municipal wastewater treatment. Water Res. 30: 122–134

    Google Scholar 

  • Klopp R & Pätsch B (1994) Organische Komplexbildner in Abwasser, Oberflächenwasser und Trinkwasser, dargestellt am Beispiel der Ruhr. Wasser & Boden: 32–37

  • Klüner T (1996) Chemie und Biochemie des mikrobiellen EDTA-Abbaus. PhD thesis, Universität-Gesmthochschule Paderborn, Germany

    Google Scholar 

  • Klüner T, Hempel DC & Nörtemann B (1998) Metabolism of EDTA and its metal chelates by whole cells and cell-free extracts of strain BNC1. Appl. Microbiol. Biotechnol. 49: 194–201

    Google Scholar 

  • Knobel H-R (1997) Genetic study of bacterial nitrilotriacetate degrading enzymes. PhD thesis No. 12146, Swiss Federal Institute of Technology, Zürich, Switzerland

    Google Scholar 

  • Könen I (1997) Bestimmung von EDTA-Ersatzstoffen auf Aminopolycarbonsäurebasis. PhD thesis, TH Aachen, Germany

    Google Scholar 

  • Kovaleva IB, Mitrofanova ND & Martynenko LI (1992) The structure of transition metal complexonates derived from ethylenediamine-(N,N')-disuccinic acid. Russ. J. Inorg. Chem. 37: 41–45

    Google Scholar 

  • Lauff JJ, Steele DB, Coogan LA & Breitfeller JM (1990) Degradation of the ferric chelate of EDTA by a pure culture of an Agrobacterium sp. Appl. Environ. Microbiol. 56: 3346–3353

    Google Scholar 

  • Müller B (1996) ChemEQL: A program to calculate chemical speciation equilibria, titrations, dissolutions, precipitation, adsorption, simple kinetics, and pX-pY diagrams. Kastanienbaum, Switzerland

    Google Scholar 

  • Nörtemann B (1992) Total degradation of EDTA by mixed cultures and a bacterial isolate. Appl. Environ. Microbiol. 58: 671–676

    Google Scholar 

  • Nowack B (1996) Behaviour of EDTA in groundwater — a study of the surface reactions of metal-EDTA complexes. PhD thesis No. 11392, Swiss Federal Institute of Technology, Zürich, Switzerland

    Google Scholar 

  • Palumbo AV, Lee SY & Borman P (1994) The effect of media composition on EDTA degradation by Agrobacterium sp. Appl. Biochem. Biotechnol. 45/46: 811–822

    Google Scholar 

  • Pfennig N, Widdel F & Trüper HG (1981) The dissimilatory sulfate-reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows H & Schlegel HG (Eds) The Prokaryotes, Vol 1 (p 931). Springer Verlag, Berlin

    Google Scholar 

  • Potthoff-Karl B, Greindl T & Oftring A (1996) Synthese abbaubarer Komplexbildner und ihre Anwendung in Waschmittel-und Reinigungsformulierungen. SÖFW-J. 122: 392–397

    Google Scholar 

  • Satroutdinov AD, Dedyukhina EG, Chistyakova TI, Witschel M, Minkevich IG, Eroshin VK & Egli T (2000) Degradation of metal EDTA complexes by resting cells of the bacterial strain DSM 9103. Environ. Sci. Technol. 34: 1715–1720

    Google Scholar 

  • Saunamäki R (1995) Treatability of wastewaters from totally chlorine-free bleaching. Tappi J. 78: 185–192

    Google Scholar 

  • Scheiner D (1976) Determination of ammonia and Kjeldahl nitrogen by indophenol method. Water Res. 10: 31–36

    Google Scholar 

  • Schneider RP, Zürcher F, Egli T & Hamer G (1988) Determination of nitrilotriacetate in biological matrices using ion exclusion chromatography. Anal. Biochem. 173: 278–284

    PubMed  Google Scholar 

  • Sykora V, Pitter P, Bittnerova I & Lederer T (2001) Biodegradability of ethylenediamine-based complexing agents. Water Res. 35: 2010–2016

    PubMed  Google Scholar 

  • Uetz TA (1992) Biochemistry of nitrilotriacetate degradation in obligately aerobic, Gram-negative bacteria. PhD thesis No. 9722, Swiss Federal Institute of Technology, Zürich, Switzerland

    Google Scholar 

  • Wanner U, Kemmler J, Weilenmann H-U, Egli T, El-Banna T & Auling G (1990) Isolation and growth of a bacterium able to degrade nitrilotriacetic acid under denitrifying conditions. Biodegradation 1: 31–41

    PubMed  Google Scholar 

  • Witschel M (1999) Biochemical and physiological characterisation of a bacterial isolate able to grow with EDTA and other aminopolycarboxylic acids. PhD thesis No. 12967, Swiss Federal Institute of Technology, Zürich, Switzerland

    Google Scholar 

  • Witschel M & Egli T (1998) Purification and characterization of a lyase from the EDTA-degrading bacterial strain DSM 9103 that catalyzes the splitting of [S,S]-ethylenediaminedisuccinate, a structural isomer of EDTA. Biodegradation 8: 419–428

    Google Scholar 

  • Witschel M, Egli T, Zehnder AJB, Wehrli E & Spycher M (1999) Transport of EDTA into cells of the EDTA-degrading strain DSM 9103. Microbiology 154: 973–983

    Google Scholar 

  • Witschel M, Nagel S & Egli T (1997) Identification and characterization of the two-enzyme system catalyzing the oxidation of EDTA in the EDTA-degrading bacterial strain DSM 9103. J. Bacteriol. 179: 6937–6943

    PubMed  Google Scholar 

  • Wolf K & Gilbert PA (1992) EDTA-Ethylenediaminetetraacetic acid. In: Hutzinger O (Ed) The Handbook of Environmental Chemistry, Vol 3 (pp 243–259). Springer, Berlin Heidelberg

    Google Scholar 

  • Young JM, Kuykendall LD, Martinez-Romero E, Kerr A & Sawada H (2001) A revision of Rhizobium, with an emended description of the genus, and the inclusion of all species of Agrobacterium and Allorhizobiuzm undicola as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola andR. vitis. Int. J. Syst. Evol. Microbiol. 51: 89–103

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weilenmann, HU., Engeli, B., Bucheli-Witschel, M. et al. Isolation and Growth Characteristics of an EDTA-degrading Member of the α-subclass of Proteobacteria . Biodegradation 15, 289–301 (2004). https://doi.org/10.1023/B:BIOD.0000042184.35056.ab

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOD.0000042184.35056.ab

Navigation