Skip to main content
Log in

The cardiolipin-binding domain of Bid affects mitochondrial respiration and enhances cytochrome c release

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Bid is cleaved by caspase 8 during apoptosis and the truncated Bid (tBid) translocates to mitochondria by targeting cardiolipin. Amino acids 103–162 of Bid were reported as the cardiolipin-binding domain (CBD). The EGFP-CBD fusion protein targets to mitochondria and induces apoptosis. Using [3H]cardiolipin, we proved that recombinant CBD binds cardiolipin similar to tBid and tBid(G94E), a mutant with a defective BH3 domain. CBD could induce cytochrome c release from isolated mitochondria, but much less potent than tBid. Free cardiolipin inhibited the CBD-induced cytochrome c release, suggesting that it may be mediated by interfering with mitochondrial cardiolipin, especially with the interaction between cytochrome c and cardiolipin. This is consistent with the findings that CBD induced cytochrome c release in Bax-deficient cells, and that CBD suppressed mitochondrial respiration through directly interfering with cardiolipin, a critical lipid involved in oxidative phosphorylation. These results indicate the functional importance of CBD in tBid-induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang DC, Strasser A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell 2000; 103: 839–842.

    Article  PubMed  Google Scholar 

  2. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999; 13: 1899–1911.

    PubMed  Google Scholar 

  3. Yin XM, Wang K, Gross A, et al.Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 1999; 400: 886–891.

    Article  PubMed  Google Scholar 

  4. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998; 94: 491–501.

    Article  PubMed  Google Scholar 

  5. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome crelease from mitochondria in response to activation of cell surface death receptors. Cell 1998; 94: 481–490.

    Article  PubMed  Google Scholar 

  6. Wei MC, Lindsten T, Mootha VK, et al. tBID, a membranetargeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 2000;14: 2060–2071.

    PubMed  Google Scholar 

  7. Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 2000; 7: 1166–1173.

    Article  PubMed  Google Scholar 

  8. Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 2001; 292: 727–730.

    Article  PubMed  Google Scholar 

  9. Desagher S, Osen-Sand A, Montessuit S, et al. Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase n 8. Mol Cell 2001; 8: 601–611.

    Article  PubMed  Google Scholar 

  10. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002; 2: 18–192.

    Article  Google Scholar 

  11. Desagher S, Osen-Sand A, Nichols A, et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome crelease during apoptosis. J Cell Biol 1999; 144: 891–901.

    Article  PubMed  Google Scholar 

  12. Eskes R, Desagher S, Antonsson B, Martinou JC. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 2000; 20: 929–935.

    Article  PubMed  Google Scholar 

  13. GrinbergM, Sarig R, ZaltsmanY, et al. tBID homooligomerizes in the mitochondrial membrane to induce apoptosis. J Biol Chem 2002; 277: 12237–12245.

    Article  PubMed  Google Scholar 

  14. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional structure of the apoptosome: Implications for assembly, procaspase-9 binding, and activation. Mol Cell 2002; 9: 423–432.

    Article  PubMed  Google Scholar 

  15. Zha J, Weiler S, Oh KJ, Wei MC, Korsmeyer SJ. Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 2000; 290: 1761–1765.

    Article  PubMed  Google Scholar 

  16. Lutter M, Fang M, Luo X, Nishijima M, Xie X, Wang X. Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol 2000; 2: 754–761.

    Article  PubMed  Google Scholar 

  17. Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G. Solution structure of BID, an intracellular amplifier of apoptotic signaling.n Cell 1999; 96: 615–624.

    Article  PubMed  Google Scholar 

  18. McDonnell JM, Fushman D, Milliman CL, Korsmeyer SJ, Cowburn D. Solution structure of the proapoptotic molecule BID: A structural basis for apoptotic agonists and antagonists. Cell 1999; 96: 625–634.

    Article  PubMed  Google Scholar 

  19. Gottlieb E, Armour SM, Thompson CB. Mitochondrial respiratory control is lost during growth factor deprivation. Proc Natl Acad Sci USA 2002; 99: 12801–12806. 540 Apoptosis Vol 9 No 5 2004

    Article  PubMed  Google Scholar 

  20. Ghafourifar P, Klein SD, Schucht O, et al. Ceramide induces cytochrome c release from isolated mitochondria. Importance of mitochondrial redox state. J Biol Chem 1999; 274: 6080–6084.

    Article  PubMed  Google Scholar 

  21. Esposti MD, Erler JT, Hickman JA, Dive C. Bid. a widely expressed proapoptotic protein of the Bcl-2 family, displays lipid transfer activity. Mol Cell Biol 2001; 21: 7268–7276.

    Article  PubMed  Google Scholar 

  22. Basanez G, Sharpe JC, Galanis J, Brandt TB, Hardwick JM, Zimmerberg J. Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J Biol Chem 2002; 277: 49360–49365.

    Article  PubMed  Google Scholar 

  23. Epand RF, Martinou JC, Fornallaz-Mulhauser M, HughesDW, Epand RM. The apoptotic protein tBid promotes leakage by altering membrane curvature. J Biol Chem 2002; 277: 32632–32639.

    Article  PubMed  Google Scholar 

  24. Zhai D, Miao Q, Xin X, Yang F. Leakage and aggregation of phospholipid vesicles induced by the BH3-only Bcl-2 family member, BID. Eur J Biochem 2001; 268: 48–55.

    Article  PubMed  Google Scholar 

  25. Hu X, Han Z, Wyche JH, Hendrickson EA. Helix 6 of tBId is necessary but not sufficient for mitochondrial binding activity. Apoptosis 2003; 8: 277–289.

    Article  PubMed  Google Scholar 

  26. Esposti MD, Cristea IM, Gaskell SJ, NakaoY, Dive C. Proapoptotic Bid binds to monolysocardiolipin, a new molecular connection between mitochondrial membranes and cell death. Cell Death Differ 2003; 10: 1300–309.

    Article  PubMed  Google Scholar 

  27. Degli Esposti M. The mitochondrial battlefield and membrane lipids during cell death signalling. Ital J Biochem 2003; 52: 43–50.

    PubMed  Google Scholar 

  28. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S. Cytochrome crelease from mitochondria proceeds by a twostep process. PNAS 2002; 99: 1259–1263.

    Article  PubMed  Google Scholar 

  29. Scorrano L, Ashiya M, Buttle K, et al. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome cduring apoptosis. Dev Cell 2002; 2: 55–67.

    Article  PubMed  Google Scholar 

  30. Shidoji Y, Hayashi K, Komura S, Ohishi N, Yagi K. Loss of molecular interaction between cytochrome cand cardiolipin due to lipid peroxidation. Biochem Biophys Res Commun 1999; 264: 343–347.

    Article  PubMed  Google Scholar 

  31. Kuwana T, Mackey MR, Perkins G, et al. Bid, bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 2002; 111: 331–342.

    Article  PubMed  Google Scholar 

  32. Schlame M, Rua D, Greenberg ML. The biosynthesis and functional role of cardiolipin. Prog Lipid Res 2000; 39: 257–288.

    Article  PubMed  Google Scholar 

  33. Jiang F, Ryan MT, Schlame M, et al. Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function. J Biol Chem 2000; 275:22387–22394.

    Article  PubMed  Google Scholar 

  34. Koshkin V, Greenberg ML. Oxidative phosphorylation in cardiolipin-lacking yeast mitochondria. Biochem J 2000; 347Pt 3: 687–691.

    Article  PubMed  Google Scholar 

  35. Ostrander DB, Zhang M, Mileykovskaya E, Rho M, Dowhan W. Lack of mitochondrial anionic phospholipids causes an inhibition of translation of protein components of the electronm transport chain. A yeast genetic model system for the study of anionic phospholipid function in mitochondria. J Biol Chem 2001; 276: 25262–25272.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Weiss, A., Durrant, D. et al. The cardiolipin-binding domain of Bid affects mitochondrial respiration and enhances cytochrome c release. Apoptosis 9, 533–541 (2004). https://doi.org/10.1023/B:APPT.0000038034.16230.ea

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPT.0000038034.16230.ea

Navigation