Skip to main content
Log in

Molecular phylogeny of oribatid mites (Oribatida, Acari): evidence for multiple radiations of parthenogenetic lineages

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

Nucleotide sequences of the D3 expansion segment and its flanking regions of the 28S rDNA gene were used to evaluate phylogenetic relationships among representative sexual and asexual oribatid mites (Oribatida, Acariformes). The aim of this study was to investigate the hypothesis that oribatid mites consist of species rich clusters of asexual species that may have radiated while being parthenogenetic. Furthermore, the systematic position of the astigmate mites (Astigmata, Acariformes) which have been hypothesised to represent a paedomorphic lineage within the oribatid mites, is investigated. This is the first phylogenetic tree for oribatid mites s.1. (incl. Astigmata) based on nucleotide sequences. Intraspecific genetic variation in the D3 region was very low, confirming the hypothesis that this region is a good species marker. Results from neighbour joining (NJ) and maximum parsimony (MP) algorithms indicate that several species rich parthenogenetic groups like Camisiidae, Nanhermanniidae and Malaconothridae are monophyletic, consistent with the hypothesis that some oribatid mite groups diversified despite being parthenogenetic. The MP and maximum likelihood (ML) method indicated that the D3 region is a good tool for elucidating the relationship of oribatid mite species on a small scale (genera, families) but is not reliable for large scale taxonomy because branches from the NJ algorithm collapsed in the MP and ML tree. In all trees calculated by different algorithms the Astigmata clustered within the oribatid mites, as proposed earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alberti G., Norton R.A. and Kasbohm J. 2001. Fine structure and mineralisation of cuticle in Enarthronota and Lohmannioidea (Acari: Oribatida). In: Halliday R.B., Walter D.E., Proctor H.C., Norton R.A., Colloff M.J. (eds) Acarology: Proceedings of the 10th International Congress. CSIRO Publishing, Melbourne, Australia, pp. 230–241.

    Google Scholar 

  • Arkhipova I. and Meselson M. 2000. Transposable elements in sexual and ancient asexual taxa. Proc. Nat. Acad. Sci. USA 97: 14473–14477.

    Google Scholar 

  • Bell G. 1982. The Masterpiece of Nature. The Evolution and Genetics of Sexuality. University of California Press, California, USA.

    Google Scholar 

  • Butlin R., Schön I. and Martens K. 1998. Asexual reproduction in non-marine ostracods. Heredity 81: 473–480.

    Google Scholar 

  • Carta L.K., Skantar A.M. and Handoo Z.A. 2001. Molecular, morphological and thermal characters of 19 Pratylenchus spp. and relatives using the D3 segment of the nuclear LSU rRNA gene. Nematropica 31: 195–209.

    Google Scholar 

  • Crow J.F. 1994. Advantages of sexual reproduction. Dev. Gen. 15: 205–213.

    Google Scholar 

  • Cruickshank R.H. 2002. Molecular markers for the phylogenetics of mites and ticks. Syst. Appl. Acarol. 7: 3–14.

    Google Scholar 

  • Cruickshank R.H. and Thomas R.H. 1999. Evolution of haplodiploidy in dermanyssine mites (Acari: Mesostigmata). Evolution 53: 1796–1803.

    Google Scholar 

  • Ghiselin M.T. 1974. The Economy of Nature and the Evolution of Sex. University of California Press, California, USA.

    Google Scholar 

  • Giribet G., Carranza S., Riutort M., Baguna J. and Ribeira C. 1999a. Internal phylogeny of the Chilopoda (Myriapoda, Arthropoda) using complete 18S rDNA and partial 28S rDNA sequences. Phil. Trans. Roy. Soc. Lond. Ser. B 354: 215–222.

    Google Scholar 

  • Giribet G., Rambla M., Carranza S., Baguna J., Riutort M. and Ribeira C. 1999b. Phylogeny of the arachnid order opiliones (Arthropoda) inferred from a combined approach of complete 18S and partial 28S ribosomal DNA sequences and morphology. Mol. Phyl. Evol. 11: 296–307.

    Google Scholar 

  • Grandjean F. 1937. Sur quelques charactères des Acaridiae libres. Bull. Soc. Zool. France 62: 388–398.

    Google Scholar 

  • Grandjean F. 1953. Essai de classification des Oribates (Acariens). Bull. Soc. Zool. France 78: 421–446.

    Google Scholar 

  • Grandjean F. 1965. Complément a mon travail de 1953 sur la classification des oribates. Acarologia 7: 713–734.

    Google Scholar 

  • Grandjean F. 1969. Considérations sur le classement des oribates: leur division en 6 groupes majeurs. Acarologia 11: 127–153.

    Google Scholar 

  • Hamilton W.D. 1980. Sex versus non-sex versus parasite. Oikos 35: 282–290.

    Google Scholar 

  • Hammer M. and Wallwork J.A. 1979. A review of the world distribution of oribatid mites (Acari: Cryptostigmata) in relation to continental drift. Biol. Skr. Dan. Vid. Selsk. 22: 1–31.

    Google Scholar 

  • Haumann G. 1991. Zur Phylogenie primitiver Oribatiden (Acari: Oribatida). Verlag Technische Universität, Graz, Austria.

    Google Scholar 

  • Judson P.O. and Normark B.B. 1996. Ancient asexual scandals. Trends Ecol. Evol. 11: 41–46.

    Google Scholar 

  • Knülle W. 1957. Morphologische und entwicklungsgeschichtliche Untersuchungen zum phylogenetischen System der Acari: Acariformes Zachv. I. Oribatei: Malaconothridae. Mitt. Zool. Mus. Berlin 33: 97–213.

    Google Scholar 

  • Kondrashov A.S. 1993. Classification of hypotheses on the advantage of amphimixis. J. Hered. 84: 372–387.

    Google Scholar 

  • Litvaitis M.K., Nunn G., Thomas W.K. and Kocher T.D. 1994. A molecular approach for the identification of meiofaunal turbellarians (Platyhelminthes, Turbellaria). Mar. Biol. 120: 437–442.

    Google Scholar 

  • Litvaitis M.K., Bates J.W., Hope W.D. and Moens T. 2000. Inferring a classification of the Adenophorea (Nematoda) from nucleotide sequences of the D3 expansion segment (26?28S rDNA). Can. J. Zool. 78: 911–922.

    Google Scholar 

  • Maraun M. and Scheu S. 2000. The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23: 374–383.

    Google Scholar 

  • Maraun M., Heethoff M., Scheu S., Norton R.A., Weigmann G. and Thomas R.H. 2003. Radiation in sexual and parthenogenetic oribatid mites (Oribatida, Acari) as indicated by genetic divergence of closely related species. Exp. Appl. Acarol. 29: 175–187.

    Google Scholar 

  • Maynard Smith J. 1978. The Evolution of Sex. Cambridge University Press, Cambridge.

    Google Scholar 

  • McLain D.K., Li J. and Oliver J.H. 2001. Interspecific and geographical variation in the sequence of rDNA expansion segment D3 of Ixodes ticks (Acari, Ixodidae). Heredity 86: 234–242.

    Google Scholar 

  • Muller H.J. 1964. The relation of recombination to mutational advance. Mut. Res. 1: 2–9.

    Google Scholar 

  • Norton R.A. 1998. Morphological evidence for the evolutionary origin of Astigmata (Acari, Acariformes). Exp. App. Acarol. 22: 559–594.

    Google Scholar 

  • Norton R.A. 2001. Systematic relationships of Nothrolohmanniidae, and the evolutionary plasticity of body forms in Enarthronota (Acari. Oribatida). In: Halliday R.B., Walter D.E., Proctor H.C., Norton R.A., Colloff M.J. (eds) Acarology: Proceedings of the 10th International Congress. CSIRO Publishing, Melbourne, Australia, pp. 58–75.

    Google Scholar 

  • Norton R.A. and Metz L. 1980. Nehypochthoniidae (Acari: Oribatei), a new family from the southeastern United States. Ann. Entom. Soc. Am. 73: 54–62.

    Google Scholar 

  • Norton R.A. and Palmer S.C. 1991. The distribution, mechanisms, and evolutionary significance of parthenogenesis in oribatid mites. In: Schuster R. and Murphy P.W. (eds) The Acari: Reproduction, Development and Life-history Strategies. Chapman and Hall, London, pp. 107–136.

    Google Scholar 

  • Norton R.A., Bonamo P.M., Grierson J.D. and Shear W.A. 1988. Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York. J. Paleont. 62: 259–269.

    Google Scholar 

  • Norton R.A., Kethley J.B., Johnston D.E. and OConnor B.M. 1993. Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Wrensch D.L. and Ebbert M.A. (eds) Evolution and Diversity of Sex Ratios. Chapman and Hall, New York, pp. 8–99.

    Google Scholar 

  • OConnor B.M. 1984. Phylogenetic relationships among higher taxa in the Acariformes, with particular reference to the Astigmata. In: Griffith D.A. and Bowman C.E. (eds) Acarology VI, Vol. 1. Ellis Horwood Ltd, Chichester, UK, pp. 19–27.

    Google Scholar 

  • Okabe K. and OConnor B.M. 2001. Thelytokous reproduction in the family Acaridae (Astigmata). In: Halliday R.B., Walter D.E., Proctor H.C., Norton R.A. and Colloff M.J. (eds) Acarology: Proceedings of the 10th International Congress. CSIRO Publishing, Melbourne, Australia, pp. 170–175.

    Google Scholar 

  • Olson P.D., Littlewood D.T.J., Bray R.A. and Mariaux J. 2001. Interrelationships and evolution of the tapeworms (Plathyhelminthes: Cestoda). Mol. Phyl. Evol. 19: 443–467.

    Google Scholar 

  • Posada D. and Crandall K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.

    Google Scholar 

  • Saitou N. and Nei M. 1987. The neighbor-joining method — a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    Google Scholar 

  • Sakata T. and Norton R.A. 2001. Opisthonotal gland chemistry of early-derivative oribatid mites (Acari) and its relevance to systematic relationships of Astigmata. Int. J. Acarol. 27: 281–291.

    Google Scholar 

  • Schatz H. 2002. Die Oribatidenliteratur und die beschriebenen Oribatidenarten (1758-2001) — eine Analyse. Abh. Ber. Naturkundemus. Görlitz 74: 37–45.

    Google Scholar 

  • Schluter D. 2000. The Ecology of Adaptive Radiation. Oxford University Press, Oxford.

    Google Scholar 

  • Schön I. and Butlin R.K. 1998. Genetic diversity and molecular phylogeny. In: Martens K. (ed) Sex and Parthenogenesis. Evolutionary Ecology of Reproductive Modes in Non-marine Ostracods. Backhuys Publishers, Leiden, The Netherlands, pp. 275–293.

    Google Scholar 

  • Shear W.A., Bonamo M., Grierson J.D., Rolfe W.D.I., Smith E.L. and Norton R.A. 1984. Early land animals in North America: evidence from Devonian age arthropods from Gilboa, New York. Science 224: 492–494.

    Google Scholar 

  • Simmons M.P., Savolainen V., Clevinger C.C., Archer R.H. and Davis J.I. 2001. Phylogeny of the Celastraceae inferred from 26S nuclear ribosomal DNA, phytochrom B, rbcL, atpB, and morphology. Mol. Phyl. Evol. 19: 353–366.

    Google Scholar 

  • Suomalainen E., Saura A. and Lokki J. 1987. Cytology and Evolution in Parthenogenesis. CRC Press Inc, Boca Raton, Florida, USA.

    Google Scholar 

  • Swofford D. 1999. PAUP*: Phylogenetic Analysis Using Parsimony (and other methods). Version 4.0. Sinauer Associates, Sunderland, Mass, USA.

    Google Scholar 

  • Taberly G. 1987a. Recherches sur la parthénogenèse thélytoque de deux espèces d'acariens oribatides: Trhypochthonius tectorum (Berlese) et Platynothrus peltifer (Koch). II: Étude anatomique, histologique et cytologique des femelles parthénogénétiques. 1re partie. Acarologia 28: 285–293.

    Google Scholar 

  • Taberly G. 1987b. Recherches sur la parthénogenèse thélytoque de deux espèces d'acariens oribatides: Trhypochthonius tectorum (Berlese) et Platynothrus peltifer (Koch). III: Étude anatomique, histologique et cytologique des femelles parthénogenétiques. 2eme partie. Acarologia 28: 389–403.

    Google Scholar 

  • Thompson J.D., Higgins D.G. and Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673–4680.

    Google Scholar 

  • Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. and Higgins D.G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 24: 4876–4882.

    Google Scholar 

  • Travé J., André H.M., Taberly G. and Bernini F. 1996. Les Acariens Oribates. Éditions AGAR and SIALF, Belgium.

    Google Scholar 

  • Van Valen L.M. 1973. A new evolutionary law. Evol. Theory 1: 1–30.

    Google Scholar 

  • Walter D.E. and Proctor H.C. 1999. Mites. Ecology, Evolution and Behaviour. CABI Publishing, Sydney, Australia.

    Google Scholar 

  • Weeks S.C. 1993. The effects of recurrent clonal formation on clonal invasion patterns and sexual persistence — a Monte-Carlo simulation of the frozen niche-variation model. Am. Nat. 141: 409–427.

    Google Scholar 

  • Weigmann G. 1996. Hypostome morphology of Malaconothridae and phylogenetic conclusions on primitive Oribatida. In: Mitchell R., Horn D.J., Needham G.J., Welbourn W.C. (eds) Acarology IX, Vol. 1, Proceedings, Ohio Biological Survey, Columbus, Ohio, USA, pp. 273–276.

    Google Scholar 

  • Welsh D.M. and Meselson M. 2000. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288: 1211–1215.

    Google Scholar 

  • Wheeler W.C. and Hayashi C.Y. 1998. The phylogeny of the extant chelicerate orders. Cladistics 14: 173–192.

    Google Scholar 

  • Whiting M.F., Carpenter J.C., Wheeler Q.D. and Wheeler W.C. 1997. The strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst. Biol. 46: 1–68.

    Google Scholar 

  • Woas S. 1990. Die phylogenetische Entwicklungslinien der Höheren Oribatiden (Acari). I. Zur Monophylie der Poronota Grandjean, 1953. Andrias 7: 91–168.

    Google Scholar 

  • Woas S. 2002. Acari: Oribatida. In: Adis J. (ed) Amazonian Arachnida and Myriapoda. Pensoft Publishers. Sofia, Bulgaria, pp. 21–291.

    Google Scholar 

  • Wrensch D.L., Kethley J.B. and Norton R.A. 1994. Cytogenetics of holokinetic chromosomes and inverted meiosis: keys to the evolutionary success of mites, with generalizations on eukaryotes. In: Houck M.A. (ed) Mites: Ecological and Evolutionary Analyses of Life-History Pattern. Chapman and Hall, New York, pp. 282–343.

    Google Scholar 

  • Zachvatkin A.A. 1953. [Studies on the morphology and postembryonic development of tyroglyphids (Sarcoptiformes, Tyroglyphoidea).] In: Smirnov E.S. and Dubinin V.B. (eds) A.A. Zachvatkin, Collected Scientific Works. Moscow State University Publishing House, Moscow pp. 19–120. (in Russian).

    Google Scholar 

  • Zuker M., Mathews D.H. and Turner D.H. 1999. Alogorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In: Barciszewski J. and Clark B.F.C. (eds) RNA Biochemistry and Biotechnology. NATO ASI Series, Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Maraun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maraun, M., Heethoff, M., Schneider, K. et al. Molecular phylogeny of oribatid mites (Oribatida, Acari): evidence for multiple radiations of parthenogenetic lineages. Exp Appl Acarol 33, 183–201 (2004). https://doi.org/10.1023/B:APPA.0000032956.60108.6d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPA.0000032956.60108.6d

Navigation