Skip to main content
Log in

Ceramic membranes: Morphology and transport

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ceramic membranes generally consist of permselective material as standalone disks or tubes or as thin films on porous supports. Applications are often energy/environment- related in H2, CO2 and O2 separation, H2O pervaporation, hydrocarbon separation/partial oxidation and liquid treatment such as water purification. Thin membrane films can be applied on porous supports by particulate, wet-chemical or vapor phase deposition techniques. Examples of permselective inorganic membrane compositions are dense Pd alloys and various perovskites, micro-porous (Ø < 2 nm) amorphous silica and zeolites and meso-porous (2 < Ø < 50 nm) alumina, silica and titania. The latter membranes may act as intermediate supporting layers for micro-porous membranes. Transport descriptions for meso- and macro-porous (Ø > 50 nm) membranes are based on the concepts of Knudsen diffusion (gases only), viscous flow or Maxwell-Stephan (MS) multi-component transport (Dusty Gas Model for gasses). Transport in dense membranes is described by Onsager irreversible thermodynamics and often worked out in terms of concentration- and/or field-driven diffusion. The transport descriptions as mentioned are near-equilibrium approaches that incorporate semi-empirical expressions for the chemical potential (μl) of transporting species, l. The limited definition of state-of-the-art membranes justifies the use of ideal gas thermodynamics for gases, empirical Davies μ l 's for ions in liquids and Langmuir thermodynamics for surface adsorption and for most mobile species in 3-D lattices. Mobile electrons in cobaltates and metals form an exception to the latter, being better described as a Fermi liquid correlated electron system. Onsager cross-terms are seldom considered and are likely to be most relevant for molecular diffusion in gas mixtures and mixed electron-ion conductors; in both cases when different species have a significant energetic interaction. Differences in mobility of charged species may lead to the development of diffusion fields that can be incorporated in the chemical potential of that species. Single- and multi-component diffusion in liquids and in micro-porous and dense membranes can be described with chemical-, field- or MS diffusion coefficients. In solid state transport these can be related to mechanical mobilities for vacancy or interstitial mechanisms. Non-equilibrium correlation effects in diffusion can generally be ignored, except for the case of multi-component diffusion of species on a host lattice at high concentrations and with large differences in mobilities. Attempts to increase fluxes with thinner membranes have resulted in support transport resistances becoming comparable to membrane resistances. Complete descriptions of multi-component transport in supported membrane structures generally requires a numerical treatment with increasing importance of multi-scale methods. Those descriptions are needed to design fully optimized membrane structures and processes. The supports can be made at a reasonable cost by conventional ceramic pressing and extrusion techniques. Modern colloidal consolidation techniques enable very homogenous structures for accurate transport measurements and design of optimized graded porosity structures. For practical applications more attention must be paid to membrane adhesion, surface functionalization (hydrophobicity), thermochemical stability, mechanical and dimensional properties and sealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Bhave, “Inorganic membranes, Synthesis, Characteristics and Applications” (Van Nostrand Reinhold, New York, 1991).

    Google Scholar 

  2. H. Verweij, “Novel Synthesis of Ceramic Membranes,” in Proc. 10th Int. Ceramics Congres & 3rd Forum on NewMaterials, Session J-4, Florence, Italy, July 14–18, 2002.

  3. L. M. van der Haar, “Mixed-conducting perovskite membranes for oxygen separation—Towards the development of a supported thin film membrane,” Thesis, University of Twente, Enschede, The Netherlands 2001.

    Google Scholar 

  4. Y. S. Lin and A. J. Burggraaf J. Membrane Sci. 79(1) (1993) 65.

    Google Scholar 

  5. A. Nijmeijer H. Kruidhof R. Bredesen and H. Verweij J. Amer. Ceram. Soc. 84(1) (2001) 136.

    Google Scholar 

  6. R. M. de Vos and H. Verweij Science 279 (1998) 1710.

    Google Scholar 

  7. Y. Lu G. Cao R. P. Kale S. Prabakar G. P. Lopez and C. J. Brinker Chem. Mater. 11 (1999) 1223.

    Google Scholar 

  8. H. Verweij G. de With and D. Veeneman J. Mater. Sci. 20(3) (1985) 1069.

    Google Scholar 

  9. C. J. M. van Rijn W. Nijdam S. Kuiper G. J. Veldhuis H. A. G. M. van Wolferen and M. C. Elwenspoek J. Micromech. Microengin. 9(2) (1999) 170.

    Google Scholar 

  10. F. C. M. Woudenberg W. F. C. Sager N. G. M. Sibelt and H. Verweij Adv. Mater. 13(7) (2001) 514.

    Google Scholar 

  11. J. Reyes-Gasga T. Krekels G. van Tendeloo J. van Landuyt W. H. M. Bruggink H. Verweij and S. Amelinckx Sol. St. Comm. 70(4) (1989) 269.

    Google Scholar 

  12. C. S. Chen H. Kruidhof H. J. M. Bouwmeester H. Verweij and A. J. Burggraaf Solid State Ionics 86/88(1) (1996) 569.

    Google Scholar 

  13. For IZA zeolite structure acronyms see: http://www.iza-structure. org/databases/.

  14. Z. P. Lai G. Bonilla I. Diaz J. G. Nery K. Sujaoti A. M. Amat E. Kokkoli O. Terasaki R. W. Thompson M. Tsapatsis and D. G. Vlachos Science 300(5618) (2003) 456.

    Google Scholar 

  15. Y. F. Lu R. Ganguli C. A. Drewien M. T. Anderson C. J. Brinker W. L. Gong Y. X. Guo H. Soyez B. Dunn M. H. Huang and J. I. Zink Nature 389(6649) (1997) 364.

    Google Scholar 

  16. D. Zhao P. Yang N. Melosh J. Feng B. F. Chmelka and G. D. Stucky Adv. Mater. 10(16) (1998) 1380.

    Google Scholar 

  17. C. Y. Tsai S. Y. Tam Y. F. Lu and C. J. Brinker J. Membrane Sci. 169(2) (2000) 255.

    Google Scholar 

  18. H. Xu and W. A. Goedel Langmuir 18(6) (2002) 2363.

    Google Scholar 

  19. P. M. Biesheuvel V. Breedveld A. P. Higler and H. Verweij Chem. Eng. Sci. 56(11) (2001) 3517.

    Google Scholar 

  20. J. E. Smay J. Cesarano and J. A. Lewis Langmuir 18(14) (2002) 5429.

    Google Scholar 

  21. X. Han K. W. Koelling D. L. Tomasko and L. J. Lee Polym. Eng. Sci. 42(11) (2002) 2094.

    Google Scholar 

  22. M. H. R. Lankhorst H. J. M. Bouwmeester and H. Verweij J. Amer. Ceram. Soc. 80(9) (1997) 2175.

    Google Scholar 

  23. N. Benes and H. Verweij Langmuir 15(23) (1999) 8292.

    Google Scholar 

  24. N. E. Benes H. J. M. Bouwmeester and H. Verweij Chem. Eng. Sci. 57(14) (2002) 2673.

    Google Scholar 

  25. N. E. Benes G. Spijksma H. Verweij H. Wormeester and B. Poelsema AIChE J. 47(5) (2001) 1212.

    Google Scholar 

  26. N. E. Benes, Mass Transport in Thin Supported Silica Membranes, Thesis, University of Twente, Enschede, The Netherlands, 2001.

    Google Scholar 

  27. M. H. R. Lankhorst H. J. M. Bouwmeester and H. Verweij Phys. Rev. Lett. 77(14) (1996) 2989.

    Google Scholar 

  28. W. Schottky, “Halbleiterprobleme,” Vol. IV, 235 (1958).

    Google Scholar 

  29. C. W. Davies, “Ion Association” (Butterworths, London, 1962) p. 41.

    Google Scholar 

  30. R. M. de Vos and H. Verweij J. Membrane Sci. 143(1) (1998) 37.

    Google Scholar 

  31. H. Verweij W. H. M. Bruggink R. A. Steeman E. Frikkee and R. B. Helmholdt Physica C 166(4) (1990) 372.

    Google Scholar 

  32. P. M. Biesheuvel Langmuir 17(12) (2001) 3553.

    Google Scholar 

  33. W. B. S. de Lint, Transport of Electrolytes through Ceramic Nanofiltration Membranes, Thesis, University of Twente, Enschede, The Netherlands, 1997.

    Google Scholar 

  34. M. H. R. Lankhorst, Thermodynamic and transport properties of mixed ionic-electronic conducting perovskite oxides, Thesis, University of Twente, Enschede, The Netherlands, 1997.

    Google Scholar 

  35. P. M. Biesheuvel and H. Verweij J. Membrane Sci. 156 (1999) 141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verweij, H. Ceramic membranes: Morphology and transport. Journal of Materials Science 38, 4677–4695 (2003). https://doi.org/10.1023/A:1027410616041

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027410616041

Keywords

Navigation