Skip to main content
Log in

Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 6070 °C by Thermus and Bacillus spp

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Although polycyclic aromatic hydrocarbons (PAH) and alkanesare biodegradable at ambient temperature, in some cases low bioavailabilities are thereason for slow biodegradation. Considerably higher mass transfer rates and PAH solubilities and hence bioavailabilities can be obtained at higher temperatures. Mixed and pure cultures of aerobic, extreme thermophilic microorganisms (Bacillus spp., Thermus sp.) were used to degrade PAH compounds and PAH/alkane mixtures at 65 °C. The microorganismsused grew on hydrocarbons as sole carbon and energy source. Optimal growthtemperatures were in the range of 60–70 °C at pH values of 6–7. The conversion of PAH with 3–5 rings (acenaphthene, fluoranthene, pyrene, benzo[e]pyrene) was demonstrated. Efficient PAH biodegradation required a second, degradable liquid phase. Thermus brockii Hamburg metabolized up to 40 mg (l h)-1 pyrene and 1000 mg(1 h)-1 hexadecane at 70 °C. Specific growth rates of 0.43 h-1 were measured for this strain with hexadecane/pyrene mixtures as the sole carbon and energy source in a 2-liter stirred bioreactor. About 0.7 g cell dry weight were formed from 1 g hydrocarbon. The experiments demonstrate the feasibility and efficiency of extreme thermophilic PAH and alkane biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey JE & Ollis DF (1986) Biochemical Engineering Fundamentals, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Birman I & Alexander M (1996) Optimizing biodegradation of phenanthrene dissolved in nonaqueous-phase liquids. Appl. Microbiol. Biotech. 45(1–2): 267–272

    Google Scholar 

  • Bohl W (1991) Technische Strömungslehre 9 edn (pp 288–289). Vogel Verlag, Würzburg

    Google Scholar 

  • Beffa T, Blanc M, Lyon PF, Vogt G, Marchiani M, Fischer JL & Aragano M (1996) Isolation of Thermus strains from hot composts (60–80 °C). Appl. Environ. Microbiol. 62: 1723–1727

    Google Scholar 

  • Chen C-I & Taylor RT (1997) Thermophilic biodegradation of BTEX by two consortia of anaerobic bacteria. Appl. Microbiol. Biotechnol. 48: 121–128

    Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3: 351–368

    Google Scholar 

  • Cuno M (1996) Kinetische Untersuchungen zum biologischen Abbau von Mineralölen und polyzyklischen aromatischen Kohlenwasserstoffen. Ph.D. thesis. Technical University of Berlin, Germany

    Google Scholar 

  • Feitkenhauer H (1998) Biodegradation of aliphatic and aromatic hydrocarbon at high temperatures: Kinetics and applications. Ph.D. thesis. Technical University of Hamburg-Harburg, Germany

    Google Scholar 

  • Feitkenhauer H, Schnicke S, M% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaie% aacaWFbbaajqwaGcqaamXvP5wqSX2qVrwzqf2zLnharyGqHrxyUDga% iuaacGaGaIhaC8VFBlaaleqaaaaa!442D!ller R & Märkl H (2001) Determination of the kinetic parameters of the phenol-degrading thermophile Bacillus themoleovorans sp. A2. Appl. Microbiol. Biotechnol. 57: 744–750

    Google Scholar 

  • Gonzales JM, Kato C & Horikoshi K (1996) Culturability and survival of an extreme thermophile isolated from deep sea hydrothermal vents. Arch. Mirobiol. 166: 64–67

    Google Scholar 

  • Griesbaum K (1989) Hydrocarbons. In: Elvers B, Hawkins S, Ravenscroft M & Schulz G (Eds) Ullmann's encyclopedia of industrial chemistry. Vol A 13, 5th edn (pp 227–275). VCH Verlag, Weinheim

    Google Scholar 

  • Hamer G, Al-Awadhi N & Egli Th (1989) Biodegradation of petrochemical industry pollutants at elevated temperatures. DECHEMA Biotechnol. Conf. (3): 823–827

  • Hebenbrock S (1997) Isolation and characterization of thermophilic microorganisms ant their application for the microbial degradation of naphthalene and benzoic acid. (In German: Isolierung und Characterisierung von thermophilen Mikroorganismen und deren Einsatz zum mikrobiellen Abbau von Naphthalin und Benzoesäure). Ph.D. thesis. Technical University of Hamburg-Harburg, Germany

    Google Scholar 

  • IUPAC Solubility data series (1989) Hydrocarbons with water and sea water, Vol 38, Part II. International Union of Pure and Applied Chemistry, Pergamon Press

  • Kanaly RA, Bartha R, Watanabe K & Harayama S (2001) Enhanced mineralization of benzo[a]pyrene in the presence of nonaqueous phase liquids. Environ. Tox. Chem. 20(3): 498–501

    Google Scholar 

  • Kato T, Haruki M, Morikawa M & Kanaya S (2001) Isolation and characterization of long-chain-alkane degrading Bacillus thermoleovorans from deep subterranean petroleum reservoirs. Appl. Microbiol. Biotech. 91(1): 64–70

    Google Scholar 

  • Kornmüller A & Wiesmann U (1999) Continuous ozonation of polycyclic aromatic hydrocarbons in oil/water-emulsions and biodegradation of oxidation products. Wat. Sci. Tech. 40(4–5): 107–114

    Google Scholar 

  • Liu D (1985) Biodegradation of petroleum via fermentation. In: Cheremisinoff PN and Ouellette RP (Eds) Biotechnology (pp 103–134). Technomic Publishing, Lancaster

    Google Scholar 

  • Mateles RI, Baruah JN & Tannenbaum SR (1967) Growth of a thermohilic bacterium on hydrocarbons: A new source of single cell proteins. Science 157: 1322–1323

    Google Scholar 

  • Mutzel A, Reinscheid UM, Antranikian G & Müller R (1996) Isolation and characterization of a thermophilic Bacillus strain, that degrades phenol and cresols as sole carbon and energy source at 70 °C. Appl. Microbiol. Biotech. 46: 593–596

    Google Scholar 

  • Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS & Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: Descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans. Internat. J. System. Evolut. Microbiol. 51(2): 433–446

    Google Scholar 

  • Perry JJ (1985) Isolation and characterization of thermophilic, hydrocarbon utilizing bacteria. Ad. Aquatic Microbiol. 3: 109–139

    Google Scholar 

  • Phillips WE & Perry JJ (1976) Thermomicrobium fosteri sp. nov., a hydrocarbon utilizing obligate thermophile. Internat. J. System. Bacteriol. 26: 220–225

    Google Scholar 

  • Samanta SK, Singh OV & Jain RK (2002) Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends in Biotech. 20(6): 243–248

    Google Scholar 

  • Shimura M, Mukerjee-Dhar G, Kimbara K, Nagato H, Kiyohara H & Hatta T (1999) Isolation and characcterization of a thermophilic bacillus sp. JF8 capable of degrading polychlorinated biphenyls and naphthalene. FEMS Microbiol. Lett. 178: 87–93

    Google Scholar 

  • Sorkoh A, Ibrahim AS, Ghanoum MA & Radwan SS (1993) High-temperature hydrocarbon degradation by Bacillus stearothermophilus from oil polluted Kuwaiti desert. Appl. Microbiol. Biotech. 39(1): 123–126

    Google Scholar 

  • Stehr J, Müller T, Svensson K, Kamnerdpetch C & Scheper T (2001) Basic examinations on chemical pre-oxidation by ozone for enhancing bioremediation of phenanthrene contaminated soils. Appl. Microbiol. Biotech. 57(5–6): 803–809

    Google Scholar 

  • Süßmuth R, Eberspächer J, Haag R & Springer W (1987) Biochemisch-mikrobiologisches Praktikum (pp 55–60). Thieme Verlag, Stuttgart

    Google Scholar 

  • Tiehm A, Stieber M, Werner P & Frimmel FH (1997) Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environ. Sci. Tech. 31(9): 2570–2576

    Google Scholar 

  • Wilhelms A, Larter SR, Head I, Farrimond P, di-Primio R & Zwach R (2001) Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411(6841): 1034–1037

    Google Scholar 

  • Wilichowski M (1994) Aufarbeitung mineralölkontaminierter Böden durch Bodenwäsche und Flotation. Ph.D. thesis. Technical University of Hamburg-Harburg, Germany

    Google Scholar 

  • Yaws CL, Nijhawan S & Li KY (1995) Diffusion coefficients in water. In: Yaws C (Ed) Handbook of transport property data (pp 141–168). Gulf Publishing Company

  • Zarilla K & Perry JJ (1984) Thermoleophilum album gen-nov and sp-nov, a bacterium obligate for thermophily and normal-alkane substrates. Arch. Microbiol. 137(4): 286–290

    Google Scholar 

  • Zarilla K & Perry JJ (1987) Bacillus thermoleovorans, sp. nov., a species of obligately thermophilic hydrocarbon utilizing endospore forming bacteria. System. Appl. Microbiol. 9: 258–264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Feitkenhauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feitkenhauer, H., Müller, R. & MAuml;rkl, H. Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 6070 °C by Thermus and Bacillus spp. Biodegradation 14, 367–372 (2003). https://doi.org/10.1023/A:1027357615649

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027357615649

Navigation