Skip to main content
Log in

Simulating the Performance of Michelson- and Sagnac-based Laser Interferometric Gravitational Wave Detectors in the Presence of Mirror Tilt and Curvature Errors

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We model the behaviour of single-bounce delay-line dual recycled Sagnac-based interferometer and compare its performance with that of single-bounce Michelson-based system. Geometric imperfections such as mirror tilt and curvature mismatch can strongly influence the performance of the Sagnac device due to the inherently smaller free spectral range (FSR) and higher order mode spacing. This leads to a greater number of higher order modes near, or within the signal band in the signal recycling cavity of the instrument. The important consequence of that is, in general, a greater sensitivity of a Sagnac system to nonideal parameters and imperfections of various kind affecting the performance of a real interferometer. A number of optical configurations have also been examined numerically to determine the best possible optical arrangement, in the presence of such geometric imperfections. We show that there is an optimum choice for the nominal radius of curvature of the end mirrors which results from balancing the loss due to mirror tilt against that due to curvature mismatch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abramovici, A., et al. (1992). Science 256, 325.

    Google Scholar 

  2. Brillet, A., Jacquemet, M., Giazotto, A., et al. (1992). VIRGO FCD, unpublished.

  3. Danzmann, K., et al. (1994). GEO600–proposal for a 600 m laser-interferometric gravitational-wave antenna, Max-Planck-Institut für Quantenoptik, Report 190.

  4. Luck, H., et al. (1997). Class. Quantum Grav. 14, 1471.

    Google Scholar 

  5. Tsubono, K (1995). In: Proc. 1st. Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella and F. Ronga, eds. (World Scientific, Singapore).

    Google Scholar 

  6. Blair, D. G., Munch, J., McClelland, D. E., Sandeman, R. J. (1998–). Australian Consortium for Interferometric Gravitational Astronomy, ARC Project, unpublished.

  7. Drever, R. W. (1983). In Gravitational Radiation, N. Deruelle and T. Piran, eds. (North-Holland, Amsterdam).

    Google Scholar 

  8. Meers, B. J. (1988). Phys. Rev. D 38, 2317.

    Google Scholar 

  9. Vinet, J.-Y., Meers, B. J., Man, C. N., and Brillet, A. (1988). Phys. Rev. D 38, 433.

    Google Scholar 

  10. Meers, B. J., and Strain, K. A. (1991). Phys. Rev. D 43, 3117.

    Google Scholar 

  11. Mizuno, J., Strain, K. A., Nelson, P. G., Chen, J. M., Schilling, R., Rudiger, A., Winkler, W., and Danzmann, K. (1993). Phys. Lett. A 175, 273.

    Google Scholar 

  12. D. G. Blair, ed. (1991). The Detection of Gravitational Radiation (Cambridge University Press, Cambridge).

    Google Scholar 

  13. Saulson, P. R. (1994). Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific, Singapore).

    Google Scholar 

  14. Vinet, J.-Y., Hello, P., Man, C. N., and Brillet, A. (1992). J. Phys. (Paris) 2, 1287.

    Google Scholar 

  15. Vinet, J.-Y., and Hello, P. (1993). J. Modern Optics 40, 1981.

    Google Scholar 

  16. Hello, P., and Vinet, J.-Y. (1993). J. Phys. I (France) 3, 717.

    Google Scholar 

  17. Hello, P., and Vinet, J.-Y. (1993). Phys. Lett. A 178, 351.

    Google Scholar 

  18. Winkler, W., Danzmann, K., Rudiger, A., and Schilling, R. (1991). Phys. Rev. A 44, 7022.

    Google Scholar 

  19. Tridgell, A., McClelland, D. E., and Savage, C. M. (1991). In Gravitational Astronomy: Instrument Design and Astrophysical Prospects, D. E. McClelland and H.-A. Bachor, eds. (World Scientific, Singapore).

    Google Scholar 

  20. Tridgell, A., McClelland, D. E., Savage, C. M., and Meers, B. J. (1992). In Proc. VI Marcel Grossmann Meeting (Kyoto, 1991), H. Sato and T. Nakamura, eds. (World Scientific, Singapore), p.218.

    Google Scholar 

  21. McClelland, D. E., Savage, C. M., Tridgell, A. J., and Mavaddat, R. (1993). Phys. Rev. D 48, 5475.

    Google Scholar 

  22. Mavaddat, R., McClelland, D. E., Hello, P., and Vinet, J.-Y. (1995). J. Opt. (Paris) 26, 145.

    Google Scholar 

  23. McClelland, D. E. (1995). Aust. J. Phys. 48, 953.

    Google Scholar 

  24. Sun, K., Fejer, M., Gustafson, E., and Byer, R. (1996). Phys. Rev. Lett. 76, 3053.

    Google Scholar 

  25. Mizuno, J., Rudiger, A., Schilling, R., Winkler, W., and Danzmann, K. (1997). Optics Comm. 138, 383.

    Google Scholar 

  26. Siegman, A. E. (1986). Lasers (University Science Books, Mill Valley, California, USA).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrovichev, B., Gray, M. & McClelland, D. Simulating the Performance of Michelson- and Sagnac-based Laser Interferometric Gravitational Wave Detectors in the Presence of Mirror Tilt and Curvature Errors. General Relativity and Gravitation 30, 1055–1074 (1998). https://doi.org/10.1023/A:1026600721872

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026600721872

Navigation