Skip to main content
Log in

Induction of macrophage inflammatory protein-1α and vascular endothelial growth factor during inflammatory neovascularization in the mouse cornea

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

We predicted that the appearance of macrophages in inflammatory areas is necessary for angiogenic responses in various inflammatory diseases. Using a mouse inflammatory corneal model in which model mouse corneas were cauterized with silver nitrate, we examined the infiltration of macrophages immunohistochemically and the total area of neovascularization quantitively. The expression of macrophage inflammatory protein-1α (MIP-1α) and vascular endothelial growth factor (VEGF) levels were also examined. A day after cauterization, short capillaries began to develop into the corneal stroma, and after 4 or 5 days the neovascularization became maximal and then began to regress. The number of macrophages within the cauterized cornea increased to a maximum at day 3 and began to decrease at day 5. The number of infiltrated macrophages reached maximum at day 3. Both MIP-1α and VEGF protein levels increased markedly immediately after the chemical cauterization, and production of MIP-1α (85.8 pg/4 corneas) and VEGF (206.5 pg/4 corneas) was maximal at 1 day and 0.5 day after cauterization, respectively. MIP-1α and VEGF mRNA levels also increased at 0.5 day after cauterization. In situ hybridization showed that MIP-1α was localized in corneal epithelial cells, and VEGF was localized in corneal epithelial cells and infiltrating inflammatory cells. MIP-1α and VEGF may have an important role in recruiting macrophages and neovascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folkman J, Klagsburn M. Angiogenic factors. Science 1987; 235: 442–7.

    PubMed  CAS  Google Scholar 

  2. Fromer CH, Klintworth GK. An evaluation of the role of leukocytes in the pathogenesis of experimentally induced corneal vascularization. Am J Pathol 1975; 79: 537–54.

    PubMed  CAS  Google Scholar 

  3. Elner SG, Elner VM, Jaffe GJ et al. Cytokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Curr Eye Res 1995; 14: 1045–53.

    PubMed  CAS  Google Scholar 

  4. Polverini PJ. Role of the macrophage in angiogenesis-dependent diseases. Exs 1997; 79: 11–28.

    PubMed  CAS  Google Scholar 

  5. Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C. Macrophages and angiogenesis. J Leukoc Biol 1994; 55: 410–22.

    PubMed  CAS  Google Scholar 

  6. DiPietro LA, Burdick M, Low QE et al. MIP-1alpha as a critical macrophage chemoattractant in murine wound repair. J Clin Invest 1998; 101: 1693–8.

    Article  PubMed  CAS  Google Scholar 

  7. Dvorak HF. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315: 1650–9.

    Article  PubMed  CAS  Google Scholar 

  8. Nagy JA, Brown LF, Senger DR et al. Pathogenesis of tumor stroma generation: A critical role for leaky blood vessels and fibrin deposition. Biochimic Biophys Acta 1989; 948: 305–26.

    CAS  Google Scholar 

  9. Leek RD, Lewis CE, Whitehouse R et al. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 1996; 56: 4625–9.

    PubMed  CAS  Google Scholar 

  10. Kobayashi S, Nagaura T, Kimura I, Kimura M. Interferon-gamma-activated macrophages enhance angiogenesis from endothelial cells of rat aorta. Immunopharmacology 1994; 27: 23–30.

    Article  PubMed  CAS  Google Scholar 

  11. Richter G, Kruger-Krasagakes S, Hein G et al. Interleukin 10 transfected into Chinese hamster ovary cells prevents tumor growth and macrophage infiltration. Cancer Res 1993; 53: 4134–7.

    PubMed  CAS  Google Scholar 

  12. Toi M, Ueno T, Matsumoto H et al. Significance of thymidine phosphorylase as a marker of protumor monocytes in breast cancer. Clin Cancer Res 1999; 5: 1131–7.

    PubMed  CAS  Google Scholar 

  13. Nishie A, Ono M, Shono T et al. Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clinic Cancer Res 1999; 5: 1107–13.

    CAS  Google Scholar 

  14. Torisu H, Ono M, Kiryu H et al. Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: Possible involvement of TNFα and IL-1α. Int J Cancer 2000; 85: 182–8.

    PubMed  CAS  Google Scholar 

  15. Sunderkotter C, Beil W, Roth J, Sorg C. Cellular events associated with inflammatory angiogenesis in the mouse cornea. Am J Pathol 1991; 138: 931–9.

    PubMed  CAS  Google Scholar 

  16. Sonoda K, Sakamoto T, Yoshikawa H et al. Inhibition of corneal inflammation by the topical use of Ras farnesyltransferase inhibitors: Selective inhibition of macrophage localization. Invest Ophthalmol Vis Sci 1998; 39: 2245–51.

    PubMed  CAS  Google Scholar 

  17. Hsu SM, Raine L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: A comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 1981; 29: 577–80.

    PubMed  CAS  Google Scholar 

  18. Davatelis G, Tekamp-Olson P, Wolpe SD et al. Cloning and characterization of a cDNA for murine macrophage inflammatory protein (MIP), a novel monokine with inflammatory and chemokinetic properties. J Exp Med 1988; 167: 1939–44.

    Article  PubMed  CAS  Google Scholar 

  19. Claffey KP, Wilkison WO, Spiegelman BM. Vascular endothelial growth factor. Regulation by cell differentiation and activated second messenger pathways. J Biol Chem 1992; 267: 16317–22.

    PubMed  CAS  Google Scholar 

  20. Onoue H, Maeyama K, Nomura S et al. Absence of immature mast cells in the skin of Ws/Ws rats with a small deletion at tyrosine kinase domain of the c-kit gene. Am J Pathol 1993; 142: 1001–7.

    PubMed  CAS  Google Scholar 

  21. Yoshida S, Ono M, Shono T et al. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol Cell Biol 1997; 17: 4015–23.

    PubMed  CAS  Google Scholar 

  22. Amano S, Rohan R, Kuroki M et al. Requirement for vascular endothelial growth factor in wound-and inflammation-related corneal neovascularization. Invest Ophthalmol Vis Sci 1998; 39: 18–22.

    PubMed  CAS  Google Scholar 

  23. Sotozono C, He J, Matsumoto Y et al. Cytokine expression in the alkali-burned cornea. Curr Eye Res 1997; 16: 670–6.

    Article  PubMed  CAS  Google Scholar 

  24. Nissen NN, Polverini PJ, Koch AE et al. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol 1998; 152: 1445–52.

    PubMed  CAS  Google Scholar 

  25. Le J, Vilcek J. Tumor necrosis factor and interleukin 1: Cytokines with multiple overlapping biological activities. Lab Invest 1987; 56: 234–48.

    PubMed  CAS  Google Scholar 

  26. Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 1996; 14: 397–440.

    Article  PubMed  CAS  Google Scholar 

  27. Spranger J, Meyer-Schwickerath R, Klein M et al. TNF-alpha level in the vitreous body. Increase in neovascular eye diseases and proliferative diabetic retinopathy. Med Klin 1995; 90: 134–7.

    CAS  Google Scholar 

  28. Garner A. Ocular angiogenesis. Inter Rev of Exp Pathol 1986; 28: 249–306.

    CAS  Google Scholar 

  29. Fromer CH, Klintworth GK. An evaluation of the role of leukocytes in the pathogenesis of experimentally induced corneal vascularization. III. Studies related to the vasoproliferative capability of polymorphonuclear leukocytes and lymphocytes. Am J Pathol 1976; 82: 157–70.

    PubMed  CAS  Google Scholar 

  30. Sholley MM, Gimbrone MA Jr., Cotran RS. The effects of leukocyte depletion on corneal neovascularization. Lab Invest 1978; 38: 32–40.

    PubMed  CAS  Google Scholar 

  31. Clauss M, Gerlach M, Gerlach H et al. Vascular permeability factor: A tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med 1990; 172: 1535–45.

    Article  PubMed  CAS  Google Scholar 

  32. Fahey TJd, Sherry B, Tracey KJ et al. Cytokine production in a model of wound healing: The appearance of MIP-1, MIP-2, cachectin/TNF and IL-1. Cytokine 1990; 2: 92–9.

    Article  PubMed  CAS  Google Scholar 

  33. Sunderkotter C, Roth J, Sorg C. Immunohistochemical detection of bFGF and TNF-alpha in the course of inflammatory angiogenesis in the mouse cornea. Am J Pathol 1990; 137: 511–5.

    PubMed  CAS  Google Scholar 

  34. Yan XT, Tumpey TM, Kunkel SL et al. Role of MIP-2 in neutrophil migration and tissue injury in the herpes simplex virus-1-infected cornea. Invest Ophthalmol Vis Sci 1998; 39: 1854–62.

    PubMed  CAS  Google Scholar 

  35. Dana MR, Zhu SN, Yamada J. Topical modulation of interleukin-1 activity in corneal neovascularization. Cornea 1998; 17: 403–9.

    Article  PubMed  CAS  Google Scholar 

  36. Li J, Perrella MA, Tsai JC et al. Induction of vascular endothelial growth factor gene expression by interleukin-1 beta in rat aortic smooth muscle cells. J Biol Chem 1995; 270: 308–12.

    Article  PubMed  CAS  Google Scholar 

  37. Patel JA, Jiang Z, Nakajima N, Kunimoto M. Autocrine regulation of interleukin-8 by interleukin-1alpha in respiratory syncytial virus-infected pulmonary epithelial cells in vitro. Immunology 1998; 95: 501–6.

    Article  PubMed  CAS  Google Scholar 

  38. Goede V, Brogelli L, Ziche M, Augustin H. Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Int J Cancer 1999; 82: 765–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, Si., Yoshida, S., Ono, M. et al. Induction of macrophage inflammatory protein-1α and vascular endothelial growth factor during inflammatory neovascularization in the mouse cornea. Angiogenesis 3, 327–334 (1999). https://doi.org/10.1023/A:1026554404941

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026554404941

Navigation