Skip to main content
Log in

Versatility of Conviction: Heterochromatin as Both a Repressor and an Activator of Transcription

  • Published:
Genetica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aagaard, L., G. Laible, P. Selenko, M. Schmid, R. Dorn, G. Schotta, S. Kuhfittig, A. Wolf, A. Lebersorger, P.B. Singh, G. Reuter & T. Jenuwein, 1999. Functional mammalian homologues of the DrosophilaPEV-modifier Su(var)3–9encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J. 18: 1923–1938.

    Article  PubMed  CAS  Google Scholar 

  • Belyaev, N.D., A.M. Keohane & B.M. Turner, 1996. Differential underacetylation of histones H2A, H3 and H4 on the inactive X chromosome in human female cells. Hum. Genet. 97: 573–578.

    PubMed  CAS  Google Scholar 

  • Belyaeva, E.S. & I.F. Zhimulev, 1991. Cytogenetic and molecular aspects of position effect variegation in Drosophila III. Continu23 ous and discontinuous compaction of chromosomal material is a result of position effect variegation. Chromosoma 100: 453–466.

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva, E.S., O.V. Demakova, G.H. Umbetova & I.F. Zhimulev, 1993. Cytogenetic and molecular aspects of position-effect variegation in Drosophila melanogaster. V. Heterochromatinassociated protein HP1 appears in euchromatic chromosomal regions that are inactivated as a result of position-effect variegation. Chromosoma 102: 53–590.

    Article  Google Scholar 

  • Biggs, W.H., K.H. Zavitz, B. Dickson, A. Var Der Straten, D. Brunner, E. Hafen & S.L. Zipursky, 1994. The Drosophila rolledlocus encodes a MAP kinase required in the sevenless signal transduction pathway. EMBO J. 13: 1628–1635.

    PubMed  CAS  Google Scholar 

  • Cleard, F., M. Delattre & P. Spierer, 1997. SU(VAR)3–7, a Drosophilaheterochromatin-associated protein and companion of HP1 in the genomic silencing of position-effect variegation. EMBO J. 16: 5280–5288.

    Article  PubMed  CAS  Google Scholar 

  • Clegg, N.J., B.M. Honda, I.P. Whitehead, T.A. Grigliatti, B. Wakimoto, H.W. Brock, V.K. Lloyd & D.A.R. Sinclair, 1998. Suppressors of position-effect variegation in Drosophila melanogasteraffect expression of the heterochromatic gene lightin the absence of a chromosome rearrangement. Genome 41: 495–503.

    Article  PubMed  CAS  Google Scholar 

  • DeCrease, C., D. Slade & B. Wakimoto, 1999. A comparative study of the heterochromatic versus euchromatic lightgene of different Drosophilaspecies. 40th Ann. Dros. Res. Conf., a287.

  • Devlin, R.H., B. Bingham & B.T. Wakimoto, 1990. The organization and expression of the lightgene, a heterochromatic gene of Drosophila melanogaster. Genetics 125: 129–140.

    PubMed  CAS  Google Scholar 

  • Dhalluin, C, J.E. Carlson, L. Zeng, C. He, A.K. Aggarwal & M.-M. Zhou, 1999. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399: 491–496.

    Article  PubMed  CAS  Google Scholar 

  • Eberl, D.F., B.J. Duyf & A.J. Hilliker, 1993. The role of heterochromatin in the expression of a heterochromatic gene, the rolledlocus of Drosophila melanogaster. Genetics 134: 277–292.

    PubMed  CAS  Google Scholar 

  • Eissenberg, J.C., T.C. James, D.M. Foster-Hartnett, T. Hartnett, V. Ngan & S.C.R. Elgin, 1990. Mutation in a heterochromatinspecific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 87: 9923–9927.

    Article  PubMed  CAS  Google Scholar 

  • Eissenberg, J.C., G.D. Morris, G. Reuter & T. Hartnett, 1992. The heterochromatin-associated protein HP-1 is an essential protein in Drosophilawith dosage-dependent effects on position-effect variegation. Genetics 131: 345–352.

    PubMed  CAS  Google Scholar 

  • Eissenberg, J.C., Y.-W. Ge & T. Hartnett, 1994. Increased phosphorylation-associated protein of Drosophila, is correlated with heterochromatin assembly. J. Biol. Chem. 269: 21315–21321.

    PubMed  CAS  Google Scholar 

  • Epstein, H., T.C. James & P.B. Singh, 1992. Cloning and expression of DrosophilaHP1 homologs from a mealybug, Planococcus citri. J. Cell Sci. 101: 463–474.

    PubMed  CAS  Google Scholar 

  • Gepner, J. & T.S. Hays, 1993. A fertility region on the Y chromosome of Drosophila melanogasterencodes a dynein microtubule motor. Proc. Natl. Acad. Sci. USA 90: 11132–11135.

    Article  PubMed  CAS  Google Scholar 

  • Hearn, M.G., A. Hedrick, T.A. Grigliatti & B.T. Wakimoto, 1991. The effect of modifiers of position-effect variegation on the variegation of heterochromatic genes of Drosophila melanogaster. Genetics 128: 785–797.

    PubMed  CAS  Google Scholar 

  • Heitz, E., 1928. Das Heterochromatin der Moose. Jb.Wiss. Bot. 69: 728–818.

    Google Scholar 

  • Hessler, A.Y., 1958. V-type position effect at the lightlocus in Drosophila melanogaster. Genetics 43: 395–403.

    Google Scholar 

  • Hilliker, A.J., 1976. Genetic analysis of the centromeric heterochromatin of chromosome 2 of Drosophila melanogaster: deficiency mapping of EMS-induced lethal complementation groups. Genetics 83: 765–782.

    PubMed  CAS  Google Scholar 

  • Hilliker, A.J. & D.G. Holm, 1975. Genetic analysis of the proximal region of chromosome 2 of Drosophila melanogaster. I. Detachment products of compound autosomes. Genetics 81: 705–721.

    PubMed  CAS  Google Scholar 

  • Huang, H., E.A. Wiley, C.R. Lending & C.D. Allis. 1998. An HP1-like protein is missing from transcriptionally silent micronuclei of Tetrahymena. Proc. Natl. Acad. Aci. USA 95: 13624–13629.

    Article  CAS  Google Scholar 

  • James, T.C. & S.C.R. Elgin, 1986. Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophilaand its gene. Mol. Cell. Biol. 6: 3862–3872.

    PubMed  CAS  Google Scholar 

  • James, T.C., J.C. Eissenberg, C. Craig, V. Dietrich, A. Hobson & S.C.R. Elgin, 1989. Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur. J. Cell Biol. 50: 170–180.

    PubMed  CAS  Google Scholar 

  • Lorentz, A., K. Ostermann, O. Fleck & H. Schmidt, 1994. Switching gene swi6, involved in repression of silent mating-type loci in fission yeast, encodes a homologue of chromatin-associated proteins from Drosophilaand mammals. Gene 143: 139–143.

    Article  PubMed  CAS  Google Scholar 

  • Lu, B.Y., P.C.R. Emtage, B.J. Duyf, A.J. Hilliker & J.C. Eissenberg, 2000. Heterochromatin protein 1 is required for the normal expression of two heterochromatin genes in Drosophila. Genetics 155: 699–708.

    PubMed  CAS  Google Scholar 

  • Luger, K., A.W. Mäder, R.K. Richmond, D.F. Sargent & T.J. Richmond, 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389: 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Messmer, S., A. Franke & R. Paro, 1992. Analysis of the functional role of the Polycomb chromo domain in Drosophila melanogaster. Genes. Dev. 6: 1241–1254.

    PubMed  CAS  Google Scholar 

  • Parks, S. & E. Wieschaus, 1991. The Drosophilagastrulation gene concertinaencodes a G?-like protein. Cell 64: 447–458.

    Article  PubMed  CAS  Google Scholar 

  • Paro, R. & D. Hogness, 1991. The polycomb protein shares a homologous domain with a heterochromatin associated protein of Drosophila. Proc. Natl. Acad. Sci. USA 88: 263–267.

    Article  PubMed  CAS  Google Scholar 

  • Platero, J.S., T. Hartnett & J.C. Eissenberg, 1995. Functional analysis of the chromo domain of HP1. EMBO J 14: 3977–3986.

    PubMed  CAS  Google Scholar 

  • Powers, J. & J.C. Eissenberg, 1993. Overlapping domains of the heterochromatin associated protein HP1 mediate nuclear localization and heterochromatin binding. J Cell Biol 120: 291–299.

    Article  PubMed  CAS  Google Scholar 

  • Reuter G., W. Werner & H.J. Hoffman, 1982. Mutants affecting position effect heterochromatinization in Drosophila melanogaster. Chromosoma 85: 539–551.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, W.S., C. Chue, M. Goebl, C. Craig, R.F. Clark, J.A. Powers, J.C. Eissenberg, S.C.R. Elgin, N.F. Rothfield & W.C. Earnshaw, 1993. Molecular cloning of a human homologue of Drosophilaheterochromatin protein HP1 using anticentromere autoantibodies with anti-chromo specificity. J. Cell Sci. 104: 573–582.

    PubMed  Google Scholar 

  • Schultz, J., 1936. Variegation in Drosophilaand the inert chromosomal regions. Proc. Natl. Acad. Sci. USA 22: 27–33.

    Article  PubMed  CAS  Google Scholar 

  • Singh, P.B., J.R. Miller, J. Pearce, R. Kothary, R.D. Burton, R. Paro, T.C. James & S.J. Gaunt, 1991. A sequence motif found in a Drosophilaheterochromatin protein is conserved in animals and plants. Nucl. Acids Res. 19: 789–794.

    PubMed  CAS  Google Scholar 

  • Spofford, J.B., 1976. Position-effect variegation, pp. 955–1019 in Genetics and Biology of Drosophila, Vol. 1c, edited by M. Ashburner and E. Novitski. Academic Press, London.

    Google Scholar 

  • Turner, B.M., A.J. Birley & J. Lavender, 1992. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophilapolytene nuclei. Cell 69: 375–384.

    Article  PubMed  CAS  Google Scholar 

  • Turner, B.M., 1998. Histone acetylation as an epigenetic determinant of long-term transcriptional competence. Cell. Mol. Life Sci. 54: 21–31.

    Article  PubMed  CAS  Google Scholar 

  • Wakimoto, B. & M. Hearn, 1990. The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of Drosophila melanogaster. Genetics 125: 141–154.

    PubMed  CAS  Google Scholar 

  • Warner, T.S., D.A.R. Sinclair, K.A. Fitzpatrick, M. Singh, R.H. Devlin & B.M. Honda, 1998. The lightgene of Drosophila melanogasterencodes a homologue of VPS41, a yeast gene involved in cellular-protein trafficking. Genome 41: 236–243.

    Article  PubMed  CAS  Google Scholar 

  • Weiler, K.S. & B. T. Wakimoto, 1995. Heterochromatin and gene expression in Drosophila. Ann. Rev. Genet. 29: 557–605.

    Google Scholar 

  • Yamaguchi, K, S. Hidema & S. Mizuno, 1998. Chicken chromobox proteins: cDNA cloning of CHCB1,-2,-3 and their relation to W-heterochromatin. Exp. Cell. Res. 242: 303–314.

    Article  PubMed  CAS  Google Scholar 

  • Ye, Q. & H.J. Worman, 1996. Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to DrosophilaHP1. J. Biol. Chem. 271: 14653–14656.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, T. & J.C. Eissenberg, 1999. Phosphorylation of heterochromatin protein 1 by casein kinase II is required for efficient heterochromatin binding in Drosophila. J. Biol. Chem. 274: 15095–15100.

    Article  PubMed  CAS  Google Scholar 

  • Zhimulev, I.F., E.S. Belyaeva, A.V. Bgatov, E.M. Baricheva & I.E. Vlassova, 1988. Cytogenetic and molecular aspects of position effect variegation in Drosophila melanogasterII. Peculiarities of morphology and genetic activity of the 2B region in the T(1;2)dor var7chromosome in males. Chromosoma 96: 255–261.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eissenberg, J.C., Hilliker, A.J. Versatility of Conviction: Heterochromatin as Both a Repressor and an Activator of Transcription. Genetica 109, 19–24 (2000). https://doi.org/10.1023/A:1026544717126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026544717126

Navigation