Skip to main content
Log in

Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

I analyzed the distribution of Acanthaceae, Araceae, Bromeliaceae, Cactaceae, Melastomataceae, and Pteridophyta in 62 vegetation plots of 400 m2 along an elevational transect between 500 m and 2450 m, and at a nearby lowland site in western Santa Cruz department, Bolivia. These groups were selected because they are physiognomically distinctive, have high species numbers, are comparatively easy to identify, adequately reflect overall floristic relationships, include a wide range of life forms, and are small. The transect was located in the Tucumano-Boliviano biogeographic zone and included drought-deciduous (<850–1000 m), mixed evergreen (850–1000 m to 1800 m), and evergreen Podocarpus-dominated (>1800 m) forests. Elevational patterns of species richness were group-specific and probably related to the ecophysiological properties of each group. Species richness in Pteridophyta and Melastomataceae was correlated with moss cover (i.e., humidity), with elevation (i.e., temperatures) in Acanthaceae and epiphytic Bromeliaceae, with potential evapotranspiration (i.e., ecosystem productivity) in Araceae, and with light availability at ground level in terrestrial Bromeliaceae and Cactaceae. Community endemism generally increased with elevation, but showed a maximum at 1700 m for terrestrial Pteridophyta, and a nonsignificant decline for epiphytic Bromeliaceae and Cactaceae. Endemism was higher for terrestrial than for epiphytic taxa, and was lower among Pteridophyta compared to all other groups, reflecting different dispersal ability among taxonomic and ecological groups. Elevational zonation, tested against a null-model of random distribution of elevational limits, revealed a significant accumulation of upper and lower elevational range boundaries at 900–1050 m and at 1500–1850 m, corresponding to the elevational limits of the main physiognomic vegetation types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin, M. P. 1985. Continuum concept, ordination methods, and niche theory. Ann. Rev. Ecol. Syst. 16: 39–61.

    Google Scholar 

  • Backeberg, C. 1979. Das Kakteenlexikon. Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Balslev, H. 1988. Distribution patterns of Ecuadorean plant species. Taxon 37: 567–577.

    Google Scholar 

  • Balslev, H., Valencia, R., Paz y Miñ o, G. Christensen, H. & Nielsen, I. 1998. Species count of vascular plants of humid lowland forest in Amazonian Ecuador. Pp. 585–594. In: Dallmeier, F. & Comiskey, J. A. (eds), Forest biodiversity in North, Central and South America and the Caribbean. Man and the Biosphere Series, Vol. 21. The Parthenon Publishing Group, Carnforth, U.K.

    Google Scholar 

  • Barthlott, W., Lauer, W. & Placke, A. 1996. Global distribution of species diversity in vascular plants: towards a world map of phytodiversity. Erdkunde 50: 317–327.

    Google Scholar 

  • Beck, S. G., Libermann C., M., Pedrotti, F. & Venanzoni, R. 1992. Estado actual de los bosques en la cuenca del Río Camacho (Departamento de Tarija-Bolivia). Studi Geologici Camerini, Vol. speziale 1992: 41–61.

  • Bianchi, R. 1981. Las Precipitaciones del Noroeste Argentino. Instituto Nacional de Tecnología Agropecuaria, Salta, Argentina.

    Google Scholar 

  • Fjeldså , J., Kessler, M. & Swanson, G. 1999. Cocapata and Saila Pata. People and biodiversity in an Andean valley. DIVA technical report no 7. National Environmental Research Institute, Kalø , Denmark.

    Google Scholar 

  • Brown, A. D., Chalukian, S. D. & Malmierca, L. M. 1985. Estudio florístico-estructural de un sector de selva semidecidua del noroeste argentino. I. Composició n florística, densidad y diversidad. Darwiniana 26: 27–41.

    Google Scholar 

  • Cabrera, A. L. 1976. Regiones fitogeográficas Argentinas. Enciclopedia Argentina de Agricultura y Jardinería. Ed. 2(1): 1–85.

    Google Scholar 

  • Chao, A. 1984. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11: 265–270.

    Google Scholar 

  • Cody, M. L. 1986. Diversity, rarity, and conservation in Meditarranean-climate regions. Pp. 123–152. In: Soulé, M. (ed.), Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Colwell, R. K. & Coddington, J. A. 1995. Estimating terrestrial biodiversity through extrapolation. Pp. 101–118. In: Hawksworth, D. L. (ed.), Biodiversity: Measurement and Estimation. Chapman and Hall, London.

    Google Scholar 

  • Colwell, R. K. & Hurtt, G. C. 1994. Nonbiological gradients in species richness and a spurious Rapoport effect. Am. Nat. 144: 570–595.

    Google Scholar 

  • Croat, T. B. 1995. Floristic comparisons of Araceae in six Ecuadorian florulas. Pp. 489–499. In: Churchill, S. P., Balslev, H., Forero, E. & Luteyn, J. L. (eds), Biodiversity and conservation of neotropical montane forests. The New York Botanical Garden, Bronx.

    Google Scholar 

  • Davidse, G., Sousa S., M. & Knapp, S. (general eds), 1995. Flora Mesoamericana. Vol. 1. Psilotaceae a Salviniaceae. Univ. Nac. Autó noma de México, México, D.F.

  • Davis, S. D., Heywood, V. H., Herrera-MacBryde, O., Villa-Lobos, J. & Hamilton, A. C. (eds). 1997. Centres of plant diversity. A guide and strategy for their conservation, Vol. 3. The Americas. WWF/IUCN, Washington, D.C.

  • de la Sota, E. R. 1977. Flora de la Provincia de Jujuy, Repú blica Argentina. Parte II. Pteridophyta. INTA, Buenos Aires.

    Google Scholar 

  • Dinerstein, E., Olson, D. M., Graham, D. J., Webster, A. L., Primm, S. A., Bookbinder, M. P. & Ledec, G. 1995. A conservation assessment of the terrestrial ecoregions of Latin America and the Caribbean. The World Bank, Washington, D.C.

    Google Scholar 

  • Eriksen, W. 1986. Frostwechsel und hygrische Bedingungen in der Punastufe Boliviens: Ein Beitrag zur Ökoklimatologie der randtropischen Anden. Pp. 1–21. In: Buchholz, H. J. (ed.), Bolivien: Beiträge zur physischen Geographie eines Andenstaates. Jahrb. Geogr. Gesellsch. Hannover, 1985.

  • Fjeldså , J. 1994. Geographical patterns for relict and young species of birds in Africa and South America and implications for conservation priorities. Biodiv. Cons. 3: 207–226.

    Google Scholar 

  • Fjeldså , J., Lambin, E. & Mertens, B. 1999. Correlation between endemism and local ecoclimatic stbility documented by comparing Andean bird distributions and remotely sensed land surface data. Ecography 22: 63–78.

    Google Scholar 

  • Fjeldså , J. & Mayer, S. 1996. Recent ornithological surveys in the Valles region, southern Bolivia and the possible role of Valles for the evolution of the Andean avifauna. DIVA technical report no 1. National Environmental Research Institute, Kalø , Denmark.

    Google Scholar 

  • Fjeldså , J. & Rahbek, C. 1997. Species richness and endemism in South American birds: implications for the design of networks of nature reserves. Pp. 466–482. In: Laurance, W. F. & Bierregaard, R. (eds), Tropical forest remnants: ecology, management and conservation of fragemented communities. Chicago University Press, Chicago.

    Google Scholar 

  • Frahm, J.-P. & Gradstein, S. R. 1991. An altitudinal zonation of tropical rain forests using bryophytes. J. Biogeogr. 18: 669–678.

    Google Scholar 

  • Gentry, A. H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Missouri Bot. Gard. 75: 1–34.

    Google Scholar 

  • Gentry, A. H. 1995. Patterns of diversity and floristic composition in neotropical montane forests. Pp. 103–126. In: Churchill, S. P., Balslev, H., Forero, E. & Luteyn, J. L. (eds), Biodiversity and conservation of neotropical montane forests. The New York Botanical Garden, Bronx.

    Google Scholar 

  • Gentry, A. H. & Dodson, C. H. 1987. Contribution of nontrees to species richness of a tropical rain forest. Biotropica 19: 149–156.

    Google Scholar 

  • Gerold, G. 1987. Untersuchungen zur Klima-, Vegetations-, Höhenstufung und Bodensequenz in SE-Bolivien. Ein randtropisches Profil vom Chaco bis zur Puna. Pp. 1–70. In: Beiträge zur Landeskunde Boliviens. Geographisches Institut der RWTH Aachen, Germany.

    Google Scholar 

  • Grau, H. R. & Brown, A. D. 1995. Patterns of tree species diversity along latitudinal and altitudinal gradients in the Argentinian subtropical montane forests. Pp. 295–300. In: Churchill, S. P., Balslev, H. Forero, E. & Luteyn, J. L. (eds), Biodiversity and conservation of neotropical montane forests. The New York Botanical Garden, Bronx.

    Google Scholar 

  • Graves, G. L. 1985. Elevational correlates of speciation and interspecific geographic variation in plumage in Andean forest birds. Auk 102: 556–579.

    Google Scholar 

  • Gurung, V. D. L. 1985. Ecological observations on the pteridophyte flora of Langtang National Park, central Nepal. Fern Gaz. 13: 25–32.

    Google Scholar 

  • Henderson, A., Galeano, G. & Bernal, R. 1995. Field Guide to the Palms of the Americas. Princeton University Press, Princeton.

    Google Scholar 

  • Holdridge, L. R., Grenke,W. C., Hatheway, W. H., Liang T. & Tosi, J. A. 1971. Forest environments in tropical life zones: a pilot study. Pergamon Press, Oxford.

    Google Scholar 

  • Hueck, K. & Seibert, P. 1981. Vegetationskarte von Südamerika. 2nd ed. Gustav Fischer Verlag, Stuttgart, Germany.

    Google Scholar 

  • Ibisch, P. L. 1996. Neotropische Epiphytendiversität -das Beispiel Bolivien. Archiv naturwissenschaftlicher Disertationen 1. Martina Galunder-Verlag, Wiehl, Germany.

    Google Scholar 

  • Ibisch, P. L., Boegner, A., Nieder, J. & Barthlott, W. 1996. How diverse are neotropical epiphytes? An analysis based on the 'Catalogue of the flowering plants and gymnosperms of Peru'. Ecotropica 1: 13–28.

    Google Scholar 

  • Karson, M. J. 1982. Multivariate statistical methods. Iowa University Press, Iowa.

    Google Scholar 

  • Kessler, M. 2000. Altitudinal zonation of Andean cryptogam communities. J. Biogeogr. 27: 275–282.

    Google Scholar 

  • Kessler, M. & Bach, K. 1999. Using indicator groups for vegetation classification in species-rich Neotropical forests. Phytocoenologia 29: 485–502.

    Google Scholar 

  • Kessler, M., Krömer, T. & Jimenez, I. In Press. Inventario de grupos selectos de plantas en el Valle de Masicurí, Santa Cruz. Rev. Boliviana de Ecología y Conservació n Ambiental.

  • Kitayama, K. 1992. An altitudinal transect study of the vegetation of Mount Kinabalu, Borneo. Vegetatio 102: 149–171.

    Google Scholar 

  • Krömer, T., Kessler, M., Holst, B. K., Luther, H. E., Gouda, E., Till, W., Ibisch, P. L. & Vásquez, R. 1999. Checklist of Bolivian Bromeliaceae with notes on species distribution and levels of endemism. Selbyana 20: 201–223.

    Google Scholar 

  • Levins, R. & Lewontin, R. 1982. Dialectics and reductionism in ecology. Pp. 107–138. In: Saarinen, E. (ed.), Conceptual issues in ecology. D. Reidel Publ. Co., Dortrecht, Holland.

    Google Scholar 

  • Lieberman, D., Lieberman, M., Peralta, R. & Hartshorn, G. S. 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J. Ecol. 84: 137–152.

    Google Scholar 

  • Lieth, H. 1975. Modeling the primary productivity of the world. Pp. 237–263. In: Lieth, H. & Whittaker, R. H. (eds), Primary Productivity of the biosphere. Springer-Verlag, New York.

    Google Scholar 

  • McCullogh, P. & Nelder, J. A. 1983. Generalized linear models. Chapman & Hall, London.

    Google Scholar 

  • Morales, C. de. 1990. Bolivia. Medio ambiente y ecología aplicada. Instituto de Ecología, UMSA, La Paz.

  • Moyano, M. Y. & Movia, C. P. 1989. Relevamiento fisonomicoestructural de la vegetació n de las Sierras de San Javier y El Periquillo. Lilloa 37: 123–135.

    Google Scholar 

  • Myers, N. 1988. Threatened biotas: 'hot spots' in tropical forests. The Environmentalist 10: 243–256.

    Google Scholar 

  • Navarro, G. 1996. Catálogo ecoló gico preliminar de las cactáceas de Bolivia. Lazaroa 17: 33–84.

    Google Scholar 

  • Navarro, G. 1997. Contribució n a la clasificació n ecoló gica y florística de los bosques de Bolivia. Rev. Boliviana Ecol. 2: 3–38.

    Google Scholar 

  • Pareja, J., Vargas, C., Suárez, R., Balló n, R., Carrasco, R. y Villarroel, C. 1978. Mapa geoló gico de Bolivia. YPFB-Servicio Geoló gico de Bolivia, La Paz.

  • Parker, T. A. III, Gentry, A. H., Foster, R. B., Emmons, L. H. & Remsen, J. V., Jr. 1993. The lowland dry forests of Santa Cruz, Bolivia: A global conservation priority. RAP Working Papers 4. Conservation International. Washington, D.C.

  • Rahbek, C. 1995.The elevational gradient of species richness: a uniform pattern? Ecography 18: 200–205.

    Google Scholar 

  • Rahbek, C. 1997. The relationship among area, elevation, and regional species richness in neotropical birds. Am. Nat. 149: 875–902.

    Google Scholar 

  • Ribera, M. O., Libermann, M., Beck, S. & Moraes, M. 1992. Vegetació n de Bolivia. Pp. 169–222. In: Mihotek B., K. (ed.), Comunidades, Teritorios Indígenas y Biodiversidad en Bolivia. U.A.G.R.M.-CIMAR, Santa Cruz, Bolivia.

    Google Scholar 

  • Richter, M. & Lauer, W. 1987. Pflanzenmorphologische Merkmale der hygrischen Klimavielfalt in der Ost-Kordillere Boliviens. Pp. 71–108. In: Gerold, G., Köster, G., Lauer, W., Mahnke, L. & Richter, M. (eds), Beiträge zur Landeskunde Boliviens. Geogr. Inst. RWTH Aachen, Germany.

    Google Scholar 

  • Ritter, F. 1980. Kakteen in Südamerika. Vol. 2. Argentinien/ Bolivien. Friedrich Ritter Selbstverlag, Spangenberg, Germany.

    Google Scholar 

  • Rosenzweig, M. L. 1968. Net primary productivity of terrestrial communities: prediction from climatic data. Am. Nat. 102: 67–74.

    Google Scholar 

  • Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, New York.

    Google Scholar 

  • Saldias P., M. 1991. Inventario de árboles en el bosque alto del Jardín Botánico de Santa Cruz, Bolivia. Ecol. Bolivia 17: 31–46.

    Google Scholar 

  • Schulenberg, T. S. & Awbrey, K. 1997. A rapid assessment of the humid forests of South Central Chuquisaca. Bolivia. RAP Working Papers 8. Conservation International. Washington, D.C.

    Google Scholar 

  • Shipley, B. & Keddy, P. A. 1987. The individualistic and community-unit concepts as falsifiable hypotheses. Vegetatio 69: 47–55.

    Google Scholar 

  • Smith, A. R. 1972. Comparison of fern and flowering plant distributions with some evolutionary interpretations for ferns. Biotropica 4: 4–9.

    Google Scholar 

  • Smith, L. B. & Downs, R.vJ. 1974- 1979. Bromeliaceae. Flora Neotropica Monograph 14, Parts 1- 3. The New York Botanical Garden, Bronx, New York.

    Google Scholar 

  • Sokal, R. R. & Rohlf, F.vJ. 1995. Biometry. 3rd edn. Freeman, New York

    Google Scholar 

  • Steyermark, J. A., Berry, P. E. & Holst, B. K. (eds), 1995. Flora of the Venezuelan Guayana, Vol. 2. Timber Press, Portland, Oregon.

    Google Scholar 

  • SYSTAT. 1997. SYSTAT for Windows, statistics, version 7.0. SPSS Inc., Chicago.

    Google Scholar 

  • Terborgh, J. & Winter, B. 1983. A method for siting parks and reserves with special reference to Colombia and Ecuador. Biol. Cons. 27: 45–58.

    Google Scholar 

  • Thornthwaite, C. W. & Mather, J. R. 1957. Instructions and tables for computing potential evapotranspiration and the water balance. Drexel Institute of Technology, Laboratory of Climatology, Publications on Climatology 10: 181–311.

    Google Scholar 

  • Tryon, R. M. 1985. Fern speciation and biogeography. Proc. Royal Soc. Edinburgh 86B: 353–360.

    Google Scholar 

  • Tryon, R. M. & Stolze, R. G. 1989-1994. Pteridophyta of Peru. Parts I-VI. Fieldiana Botany 20: 1–145; 22: 1- 128; 27: 1- 176; 29: 1- 80; 32: 1- 190; 34: 1- 123.

    Google Scholar 

  • van derWerff, H. 1990. Ferns as indicators of vegetation types in the Galapagos Archipelago. Mongr. Syst. Bot. Missouri Bot. Gard. 32: 79–92.

    Google Scholar 

  • Vásquez, J. A. & Givnish, T. J. 1998. Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán. J. Ecol. 86: 999–1020.

    Google Scholar 

  • Williams, P. H. & Humphries, C. J. 1994. Biodiversity, taxonomic relatedness, and endemism in conservation. Pp. 269–287. In: Forey, P. L., Humphries, C. J. & Vane-Wright, R. I. (eds), Systematics and conservation evaluation. Clarendon Press, Oxford.

    Google Scholar 

  • Wolf, J. H. D. 1993. Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Ann. Missouri Bot. Gard. 80: 928–960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessler, M. Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecology 149, 181–193 (2000). https://doi.org/10.1023/A:1026500710274

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026500710274

Navigation