Skip to main content
Log in

The Yeast Two-hybrid System and Its Pharmaceutical Significance

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The detected phenotypes in many diseases are caused from dysfunction in protein-protein, protein-DNA and receptor-ligand interactions. Therefore, determination of these molecular interactions followed by designing or screening the compounds to target these interactions provides a significant challenge in drug development. This review aims to highlight the yeast two-hybrid system in determination of protein-protein interactions and its possible outcomes in pharmaceutical research. The variations of the basic methodology as one- and three-hybrid systems are also disussed in relation to their potential pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. E. Regnier. Chromatography of complex protein mixtures. J. Chromatogr. 17:115–143 (1987).

    Google Scholar 

  2. E. M. Phizicky and S. Fields. Protein-protein interactions: Methods for detection and analysis. Microbiol. Rev. 59:94–123 (1995).

    Google Scholar 

  3. S. Fields and O.-K. Song. A novel genetic system to detect protein-protein interactions. Nature 340:245–246 (1989).

    Google Scholar 

  4. P. Colas and R. Brent. The impact of two-hybrid and related methods on biotechnology. Trends Biotechnol. 16:355–363 (1998).

    Google Scholar 

  5. K. H. Young. Yeast two-hybrid: So many interactions, (in) so little time. Biol. Reprod. 58:302–311 (1998).

    Google Scholar 

  6. M. Vidal and P. Legrain. Yeast forward and reverse “n”-hybrid systems. Nucleic Acids Res. 27:919–929 (1999).

    Google Scholar 

  7. C. Bai and S. J. Elledge. Gene identification using the yeast twohybrid system. Methods Enzymol. 273:331–347 (1996).

    Google Scholar 

  8. R. D. Gietz, B. Triggs-Raine, A. Robbins, K. C. Graham, and R. A. Woods. Identification of proteins that interact with a protein of interest: Applications of the yeast two-hybrid system. Mol. Cell. Biochem. 172:67–79 (1997).

    Google Scholar 

  9. T. Munder and A. Hinnen. Yeast cells as tools for target-oriented screening. Appl. Microbiol. Biotechnol. 52:311–320 (1999).

    Google Scholar 

  10. M. Johnston. The complete code for an eukaryotic cell. Genome sequencing. Curr. Biol. 6:500–503 (1996).

    Google Scholar 

  11. C. Guthrie and G. R. Fink. Guide to Yeast Genetics and Molecular Biology, Academic Press, San Diego, 1991.

    Google Scholar 

  12. S. Fields. The two-hybrid system to detect protein-protein interactions. Methods 5:116–124 (1993).

    Google Scholar 

  13. R. D. Gietz and R. A. Woods. High efficiency transformation of yeast with lithium acetate. In J. R. Johnstone (ed.), Molecular Genetics of Yeast: A Practical Approach, Oxford University Press, Oxford, 1994, pp. 121–134.

    Google Scholar 

  14. C. Bendixen, S. Gangloff, and R. V. Rothstein. A yeast mating selection scheme for highly efficient detection of protein-protein interaction. Nucleic Acids Res. 22:1778–1779 (1997).

    Google Scholar 

  15. L. Breeden and K. Nasmyth. Regulation of the yeast HO gene. Cold Spring Symposia on Quantitative Biology 50:643–650 (1985).

    Google Scholar 

  16. V. K. Jain and I. T. A. Magrath. A chemiluminescent assay for the quantification of β-galactosidase in LacZ-transfected cells. Anal. Biochem. 199:119–124 (1991).

    Google Scholar 

  17. T. Durfee, K. Becherer, P. L. Chen, S. H. Yeh, Y. Yang, A. E. Kilburn, W. H. Lee, and S. J. Elledge. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 7:555–569 (1993).

    Google Scholar 

  18. R. Brent and M. Ptashne. A eukaryotic transcriptional activator bearing the DNA specificity of prokaryotic repressor. Cell 43: 729–736 (1985).

    Google Scholar 

  19. E. A. Golemis and R. Brent. Fused protein domains inhibit DNA binding by lexA. Mol. Cell Biol. 12:3006–3007 (1992).

    Google Scholar 

  20. S. Dalton and R. Treisman. Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element. Cell 68:597–612 (1992).

    Google Scholar 

  21. T. Wang, P. K. Donahoe, and A.S. Zervos. Specific interaction of type I receptors of the TGF-beta family with the immunophilin FKBP-12. Science 265:674–676 (1994).

    Google Scholar 

  22. P. L. Bartel, J. A. Roecklein, D. SenGrupta, and S. Fields. A protein linkage map of Escherichia coli bacteriophage T7. Nat. Genet. 12:72–77 (1996).

    Google Scholar 

  23. J. R. Hudson, E. P. Dawson, K. L. Rushing, C. H. Jackson, D. Lockshon, D. Conover, C. Lanciault, J. R. Harris, S. J. Simmons, R. Rothstein, and S. Fields. The complete set of predicted genes from Saccharomyces cerevisiae in a readily useable form. Genome Res. 7:1169–1173 (1997).

    Google Scholar 

  24. S. Brenner and R. A. Lerner. Encoded combinatorial chemistry. Proc. Natl. Acad. Sci. USA 89:5381–5383 (1992).

    Google Scholar 

  25. L. M. Kauvar. Peptide mimetic drugs: A comment on progress and prospects. Nat. Biotechnol. 14:296–298 (1996).

    Google Scholar 

  26. M. R. Pavia, M. P. Cohen, G. J. Dilley, G. R. Dubuc, T. L. Durgin, F. W. Forman, M. E. Hediger, G. Milot, T. S. Powers, I. Sucholeiki, S. Zhou, and D. G. Hangauer. The design and synthesis of substituted biphenyl libraries. Bioorg. Med. Chem. 4: 659–666 (1996).

    Google Scholar 

  27. B. Li and S. Fields. Identification of mutations in p53 that affect its binding to SV40 large T antigen by using the yeast two-hybrid system. FASEB J. 7:957–963 (1993).

    Google Scholar 

  28. M. Rose and D. Botstein. Structure and function of the yeast URA3 gene. Differentially regulated expression of hybrid betagalactosidase from overlapping coding sequences in yeast. J Mol Biol. 1704:883–904 (1983).

    Google Scholar 

  29. C. A. Leanna and M. Hannink. The reverse two-hybrid system: A genetic scheme for selection against specific protein/protein interactions. Nucleic Acids Res. 24:3341–3347 (1996).

    Google Scholar 

  30. H.-M. Shih, P. S. Goldman, A. J. DeMaggio, S.M. Hollenberg, R. H. Goodman, and M. F. Hoekstra. A positive genetic selection for disrupting protein-protein interactions: Identification of CREB mutations that prevent association with the coactivator CBP. Proc. Natl. Acad. Sci. USA 93:13896–13901 (1996).

    Google Scholar 

  31. M. Vidal, R. B. Brachmann, A. Fattaey, E. Harlow, and J. D. Boeke. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc. Natl. Acad. Sci. USA 93:10315–10320 (1996).

    Google Scholar 

  32. M. Vidal, P. Braun, E. Chen, J. D. Boeke, and E. Harlow. Genetic characterisation of a mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system. Proc. Natl. Acad. Sci. USA 93:10321–10326 (1996).

    Google Scholar 

  33. J. Huang and S. L. Schreibler. A yeast-genetic system for selecting small molecule inhibitors of protein-protein interactions in nanodroplets. Proc. Natl. Acad. Sci. USA 94:13396–13401 (1997).

    Google Scholar 

  34. N. F. Kaufer, H. M. Fried, W. F. Schwindinger, M. Jasin, and J. R. Warner. Cycloheximide resistance in yeast: the gene and its protein. Nucleic Acids Res. 11:3123–3135 (1983).

    Google Scholar 

  35. K. Young, S. Lin, L. Sun, E. Lee, M. Modi, S. Hellings, M. Husbands, B. Ozenberger, and R. Franco. Identification of a calcium channel modulator using a high throughput yeast two-hybrid screen. Nature Biotechnol. 16:946–950 (1998).

    Google Scholar 

  36. M. S. Salvato and K. S. Rai. Arenaviruses. In L. H. Collier and B. W. J. Mahy (eds.), Topley and Wilson's microbiology and microbial infections, Arnold Publishing, London, United Kingdom, 1997, pp. 629–650.

    Google Scholar 

  37. Z. Topcu, D. L. Mack, R. A. Hromas, and K. L. B. Borden. The promyelocytic leukemia protein interacts with the proline-rich homeodomain protein PRH: a RING may link hematopoiesis and growth control. Oncogene 18:7091–7100 (1999).

    Google Scholar 

  38. K. L. B. Borden, E. J. Campbell-Dwyer, and M. S. Salvato. An arenavirus RING (zinc-binding) protein binds the oncoprotein PML and relocates PML nuclear bodies to the cytoplasm. J. Virol. 72:758–766 (1998).

    Google Scholar 

  39. J. J. Li and I. Herskowitz. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science 262:1870–1874 (1993).

    Google Scholar 

  40. E. J. Licitra and J. O. Liu. A three hybrid system or detecting small ligand-protein receptor interactions. Proc. Natl. Acad. Sci. USA 93:12817–12821 (1996).

    Google Scholar 

  41. J. Zhang and S. Lautar. A yeast three-hybrid method to clone ternary protein complex components. Anal. Biochem. 242:68–72 (1996).

    Google Scholar 

  42. G. C. Kneale. DNA-Protein interactions: Principles and Protocols, Humana Press, Totowa, New Jersey, 1994.

    Google Scholar 

  43. B. Rudakoff, K. Undisz, G. Mayer, L. Sobek, G. Kaufmann, R. Thiericke, S. Grabley, and T. Munder. Dual reporter systems in yeast and mammalian cells for assessing progesterone receptor modulators. J. Cell. Biochem. 73:126–136 (1999).

    Google Scholar 

  44. J. L. Nitiss. Investigating the biological functions of DNA topoisomerases in eukaryotic cells. Biochim. Biophys. Acta 1400:63–81 (1998).

    Google Scholar 

  45. Z. Topcu and F. J. Castora. Mammalian mitochondrial DNA topoisomerase I preferentially relaxes supercoils in plasmids containing specific mitochondrial DNA sequences. Biochim. Biophys. Acta 1264:377–387 (1995).

    Google Scholar 

  46. G. Capranico and M. Binaschi. DNA sequence selectivity of topoisomerases and topoisomerase poisons. Biochim. Biophys. Acta 1400:185–194 (1998).

    Google Scholar 

  47. F. Tirode, C. Malaguti, F. Romero, R. Attar, J. Camonis, and J. M. Egly. A conditionally expressed third partner stabilizes or prevents the formation of a transcriptional activator in a threehybrid system. J. Biol. Chem. 272:22995–22999 (1997).

    Google Scholar 

  48. H. A.Vasavada, S. Ganguly, F. J. Germino, Z. X. Wang, and S. M. Weissman. A contingent replication assay for the detection of protein-protein interactions in animal cells. Proc. Natl. Acad. Sci. USA 88:10686–10690 (1991).

    Google Scholar 

  49. G. Boguslawski. Effect of polymixin B sulfate and polymixin B nonapeptide on growth and permeability on the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 199:401–405 (1985).

    Google Scholar 

  50. M. Brendel. A simple method for the isolation and characterization of thymidilate uptaking mutants in Saccharomyces cerevisiae. Mol. Gen. Genet. 147:209–215 (1976).

    Google Scholar 

  51. R. F. Gaber, D. M. Copple, B. Kenedy, M. Vidal, and M. Bard. The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Mol. Cell Biol. 9:3447–3456 (1989).

    Google Scholar 

  52. E. Balzi and A. Goffeau. Yeast multidrug resistance: The PDR network. J. Bioenerg. Biomembr. 27:71–76 (1995).

    Google Scholar 

  53. A. Kralli, S. P. Bohen, and K. T. Yamamoto. LEM1, an ATPbinding cassette transporter, selectively modulates the biological potency of steroid hormones. Proc. Natl. Acad. Sci. USA 92:4701–4705 (1995).

    Google Scholar 

  54. J. R. Broach and J. Thorner. High-throughput screening for drug discovery. Nature 384:14–16 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topcu, Z., Borden, K.L.B. The Yeast Two-hybrid System and Its Pharmaceutical Significance. Pharm Res 17, 1049–1055 (2000). https://doi.org/10.1023/A:1026493310144

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026493310144

Navigation