Skip to main content
Log in

Attractor Reconstruction with Principal Components Analysis: Application to Work Flows in Hierarchical Organizations

  • Published:
Nonlinear Dynamics, Psychology, and Life Sciences

Abstract

Explored several procedural questions in the use of the principal components technique for filtering time series data and reconstructing attractors in two or more dimensions. Data originated from an earlier study on work flows in experimental hierarchical organizations. The reconstructed time series and attractors were evaluated alongside a nonlinear regression modeling approach for assessing the dynamical properties of data. The results showed that, if the nonlinear function representing the time series is initially poorly fitted, principal components filtering will probably help to identify a nonlinear structure insofar as it has been fed enough data to capture the complexity of the time series of events. The relative merits of the eigenvalue 1.00 criterion and the scree test for determining the correct number of components were also addressed. Oblique rotation procedures are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abarbanel, H. D. I. (1996). Analysis of chaotic data. New York: Springer-Verlag.

    Google Scholar 

  • Abarbanel, H. D. I., Brown, R., Sidorowich, J. J., & Tsimring, L. S. T. (1993). The analysis of observed chaotic data in physical systems. Reviews of Modern Physics, 65, 1331–1392.

    Google Scholar 

  • Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 245–276.

    Google Scholar 

  • Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. G. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272–299.

    Google Scholar 

  • Ferro Milone, F., Minelli, T. A., & Turicchia, L. (1998). Neuron synchronization and human EEG phenomenology simulation. Nonlinear Dynamics, Psychology, and Life Sciences, 2, 21–34.

    Google Scholar 

  • Guastello, S. J. (1992). Clash of the paradigms: A critique of an examination of the polynomial regression technique for evaluating catastrophe theory hypotheses. Psychological Bulletin, 111, 375–379.

    Google Scholar 

  • Guastello, S. J. (1995). Chaos, catastrophe, and human affairs. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Guastello, S. J. (1998). Creative problem solving groups at the edge of chaos. Journal of Creative Behavior, 32, 38–57.

    Google Scholar 

  • Guastello, S. J. (1999). Hierarchical dynamics affecting work performance in organizations. In. J-P. Dauwalder and W. Tschacher (Eds.), Dynamics, synergetics, and autonomous agents (pp. 290–311). Singapore: World Scientific.

    Google Scholar 

  • Guastello, S. J., & Guastello, D. D. (1998). Origins of coordination and team effectiveness: A perspective from game theory and nonlinear dynamics. Journal of Applied Psychology, 83, 423–437.

    Google Scholar 

  • Guastello, S. J., & Johnson E. A. (1999). The effect of downsizing on hierarchical work flow dynamics. Nonlinear Dynamics, Psychology, and Life Sciences, 3, 347–377.

    Google Scholar 

  • Guastello, S. J., Johnson E. A., & Rieke, M. L. (1999). Nonlinear dynamics of motivational flow. Nonlinear Dynamics, Psychology, and Life Sciences, 3, 259–274.

    Google Scholar 

  • Guastello, S. J. & Philippe, P. (1997). Dynamics in the development of large information exchange groups and virtual communities. Nonlinear Dynamics, Psychology, and Life Sciences, 1, 123–149.

    Google Scholar 

  • Johnson, T. L., & Dooley, K. (1996). Looking for chaos in time series data. In W. Sulis & A. Combs (Eds.), Nonlinear dynamics in human behaviour (pp. 44–76). Singapore: World Scientific.

    Google Scholar 

  • Kanz, H., & Schreiber, T. (1997). Nonlinear time series analysis. New York: Cambridge University Press.

    Google Scholar 

  • Kaplan, D., & Glass, L. (1995). Understanding nonlinear dynamics. NewYork: Springer-Verlag.

    Google Scholar 

  • Lange, R. (1999). A cusp catastrophe approach to the prediction of temporal patterns in the kill dates of individual serial murderers. Nonlinear Dynamics, Psychology, and Life Sciences, 3, 143–160.

    Google Scholar 

  • Packard, N. H., Crutchfield, J. P., Farmer, J. D., & Shaw, R. S. (1980). Geometry from a time series. Physical Review Letters, 45, 712–716.

    Google Scholar 

  • Rummel, R. J. (1970). Applied factor analysis. Evanston, IL: Northwestern University Press.

    Google Scholar 

  • Stewart, H. B. (1996). Chaos, dynamical structure and climate variability. In D. E. Herbert (Ed.), Chaos and the changing nature of science and medicine (pp. 80–114). Woodbury, NY: American Institute of Physics.

    Google Scholar 

  • Tabachnick, B. G., & Fidell, L. S. (1989). Using multivariate statistics (2nd. ed.). New York: Harper & Row.

    Google Scholar 

  • Torgerson, W. (1959). Theory and methods of scaling. New York: Wiley.

    Google Scholar 

  • Wiggins, S. (1988). Global bifurcations and chaos. New York: Springer-Verlag.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guastello, S.J., Bock, B.R. Attractor Reconstruction with Principal Components Analysis: Application to Work Flows in Hierarchical Organizations. Nonlinear Dynamics Psychol Life Sci 5, 175–191 (2001). https://doi.org/10.1023/A:1026471501949

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026471501949

Navigation