Skip to main content
Log in

Conditional Control of Gene Expression in the Mammary Gland

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Identifying gene function during mammary gland development and function remains a technical challenge. For example, if a gene deletion is lethal during early embryogenesis, there is no opportunity to study its effects on the development or function of the gland. Similarly, if a dominant gain of gene function alters early mammary gland development, then its specific role during lactation cannot be assessed. Conditional gene expression systems can be used to circumvent these problems. Gene deletions or dominant gain experiments can be performed in an organ or cell type specific manner at specific timepoints using inducible gene expression systems. This review focuses on tetracycline responsive transactivation and Cre-lox systems. Other tetracycline regulatable (tet system)3 or hormone inducible systems and the Flp recombinase system are discussed as alternative approaches. Each system is described. The advantages and disadvantages of each for studying gene function in the mammary gland are discussed. Finally, the role of mammary gland transplantation in these genetic studies is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. C. Standiford (1990). Tetracyclines and chloramphenicol. In G. L. Mandell, R. G. Douglas, and J. E. Bennett (eds.), Principles in Practice of Infectious Diseases, John Wiley and Sons, New York, pp. 206–216.

    Google Scholar 

  2. M. Gossen and H. Bujard (1992). Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. U.S.A. 89:5547–5551.

    PubMed  Google Scholar 

  3. W. Hinrichs, C. Kisker, M. Duvel, et al. (1994). Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science 264:418–420.

    Google Scholar 

  4. M. Gossen, S. Freundlib, G. Bender, G. Muller, W. Hillen, and H. Bujard (1995). Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1796.

    PubMed  Google Scholar 

  5. P. A. Furth, L. St. Onge, H. Boger, et al. (1994). Temporal control of gene expression in transgenic mice by a tetracycline responsive promoter. Proc. Acad. Natl. Sci. U.S.A. 91:9302–9306.

  6. A. Kistner, M. Gossen, F. Zimmerman, et al. (1996). Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 93:10933–10938.

    Google Scholar 

  7. L. Hennighausen, R. Wall, U. Tillmann, M. Li, and P. A. Furth (1995). Conditional gene expression in secretary tissues and skin of transgenic mice using the MMTV-LTR and the tetracycline responsive system. J. Cell. Biochem. 59:463–472.

    PubMed  Google Scholar 

  8. D. Ewald, M. Li, S. Efrat, et al. (1996). Time-sensitive reversal of hyperplasia in transgenic mice expressing SV40 T antigen. Science 273:1384–1386.

    PubMed  Google Scholar 

  9. D. Ewald, L. Hennighausen, and P. A. Furth (unpublished results).

  10. M. Gossen and H. Bujard (1993). Anhydrotetracycline, a novel effector for tetracycline controlled gene expression in eukaryotic cells. Nucl. Acids Res. 21:4411–4412.

    PubMed  Google Scholar 

  11. N. Schultze, Y. Burki, Y. Lang, U. Certa, and H. Bluethmann (1996). Efficient control 24 of gene expression by single step integration of the tetracycline system in transgenic mice. Nature Biotechnol. 14:499–503.

    Google Scholar 

  12. U. Baron, S. Freundlib, M. Gossen, and H. Bujard (1995). Coregulation of two gene activities by tetracycline via a bidirectional promoter. Nucl. Acids Res. 2(3):3605–3606.

    Google Scholar 

  13. P. Schokett, M. Difilippantonio, N. Hellman, and D. G. Schatz (1995). A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 92:6522–6526.

    PubMed  Google Scholar 

  14. Y. Yang, E. F. Vanin, M. A. Whitt, et al. (1995). Inducible, high-level production of infectious murine leukemia retroviral vector particles pseudotyped with vesicular stomatitis virus G envelop protein. Human Gene Ther. 6:1203–1213.

    Google Scholar 

  15. Z. Lang and J. M. Feingold 1996. An autonomously replicating eukaryotic expression vector with a tetracycline-responsive promoter. Gene 168:169–171.

    PubMed  Google Scholar 

  16. S. Baasner, H. von Melchner, T. Klenner, P. Hilgard, and T. Beckers (1996). Reversible tumorigenesis in mice by conditional expression of the HER2/c-erbB2 receptor tyrosine kinase. Oncogene 13:901–911.

    PubMed  Google Scholar 

  17. P. A. Furth, L. Hennighausen, C. Baker, B. Beatty, and P Woychik (1991). The variability in activity of the universally expressed human cytomegalovirus immediate early gene enhancer/promoter in transgenic mice. Nucl. Acids. Res. 19:6205–6208.

    PubMed  Google Scholar 

  18. R. A. McKnight, M. Spencer, R. J. Wall, and L. Henninghausen (1996). Severe position effects imposed on a 1 KB mouse whey acidic protein gene promoter are overcome by heterologous matrix attachment regions. Mol. Devel. Reprod. 44:179–184.

    Google Scholar 

  19. W. Lutz, M. Stohr, J. Schurmann, A. Wenzel, A. Lohr, and M. Schwab (1996). Conditional expression of N-myc in human neuroblastoma cells increases expression of alpha-prothymosin and ornithine decarboxylase and accelerates progression into S-phase early after mitogenic stimulation of quiescent cells. Oncogene 13:803–812.

    PubMed  Google Scholar 

  20. Z. Wu, Y. Xie, N. L. Bucher, and S. R. Farmer (1995). Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes Devel. 9:2350–2363.

    PubMed  Google Scholar 

  21. A. Wimmel, F. C. Lucibello, A. Sewing, S. Adolph, and R. Muller (1994). Inducible acceleration of Gl progression through tetracycline-regulated expression of human cyclin E. Oncogene 9:995–997.

    PubMed  Google Scholar 

  22. R. Pescini, S. Alouani, A. Proudfoot, et al. (1994). Inducible inhibition of eukaryotic gene expression. BBRC 202:1664–1667.

    Google Scholar 

  23. M. Mayford, M. E. Bach, Y.-Y. Huang, L. Wang, R. D. Hawkins, and E. R. Kandel (1996). Controlling memory formation using regulated expression of a CAMKII transgene. Science 274:1678–1683.

    PubMed  Google Scholar 

  24. J. R. Howe, B. V. Skryabin, S. M. Belcher, C. A. Zerillo, and C. Schmauss (1995). The responsiveness of a tetracycline-sensitive expression system differs in different cell lines. J. Biol. Chem. 270:14168–14174.

    PubMed  Google Scholar 

  25. A. Magalini, F. Ferrari, G. Savoldi, et al. (1995). Specificity of action of a herpesvirus VP 16/tetracycline-dependent transactivator in mammalian cell cultures. DNA Cell Biol. 14:665–671.

    Google Scholar 

  26. Z. Yu, C. S. Redfern, and G. I. Fishman (1996). Conditional transgene expression in the heart. Circulation Res. 79:691–697.

    PubMed  Google Scholar 

  27. S. Efrat, D. Fusco-DeMane, H. Lemberg, O. Al Emran and X. Wang (1995). Conditional transformation of a pancreatic beta cell line derived from transgenic mice expressing a tetracycline-regulated transgene. Proc. Natl. Acad. Sci. U.S.A. 92:3576–3580.

    PubMed  Google Scholar 

  28. P. A. Furth, M. Li, and L. Hennighausen (1997). Studying development of disease through temporally controlled gene expression in the salivary gland. Ann. NY Acad. Sci. (in press).

  29. C. Gatz, C. Frohberg, and R. Wendenburg. (1992). Stringent repression and homogeneous de-repression by tetracycline of a modified CAMV 35S promoter in intact transgenic tobacco plants. Plant J. 2:397–404.

    PubMed  Google Scholar 

  30. C. Gatz, A. Kaiser, and R. Wendenburg (1991). Regulation of a modified CAMV 35S promoter by the Tn 10-encoded Tet repressor in transgenic tobacco. Mol. Gen. Genet. 227:229–237.

    PubMed  Google Scholar 

  31. H. J. Kim, C. Gatz, W. Hillen, and T. R. Jones (1995). Tetracycline repressor-regulated gene repression in recombinant human cytomegalovirus. J. Virol. 69:2565–2573.

    PubMed  Google Scholar 

  32. U. Deuschle, W. K. Meyer, and H. J. Thiesen (1995). Tetracycline-reversible silencing of eukaryotic promoters. Mol. Cell. Biol. 15:1907–1914.

    PubMed  Google Scholar 

  33. D. No, T.-P. Yao, and R. M. Evans (1996). Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 93:3346–3351.

    PubMed  Google Scholar 

  34. Y. Wang, F. J. DeMayo, S. Y. Tsai, and B. W. O'Malley (1997). Ligand inducible and liver specific target gene expression in transgenic mice. Nature Biotechnol. 15:239–243.

    Google Scholar 

  35. P. A. Edwards, C. L. Abram, and J. M. Bradbury (1996). Genetic manipulation of mammary epithelium by transplantation. J. Mam. Gland Biol. Neoplasia 1:75–89.

    Google Scholar 

  36. M. Ip and K. M. Darcy (1996). Three-dimensional mammary primary culture model systems. J. Mam. Gland Biol. Neoplasia 1:91–110.

    Google Scholar 

  37. A. Mack, B. Sauer, K. Abremski, and R. Hoess (1992). Stoichiometry of the Crerecombinase bound to the lox recombining site. Nucl. Acids Res. 20:4451–4455.

    PubMed  Google Scholar 

  38. J. Z. Tsien, D. F. Chen, D. Gerber, et al. (1996). Subregion-and cell type-restricted gene knockout in mouse brain. Cell 87:1317–1326.

    Google Scholar 

  39. M. Lakso, B. Sauer, B. Mosinger, et al. (1992). Targeted oncogene activation bysite-specific recombination in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 89:6232–6236.

    Google Scholar 

  40. M. Lasko, J. G. Pichel, J. R. Gorman, et al. (1996). Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. U.S.A. 93:5860–5865.

  41. L. St. Onge, P. A. Furth, and P. Gruss (1996). Temporal control of Cre recombinase in transgenic mice by a tetracycline responsive promoter. Nucl. Acids Res. 24:3875–3877.

    PubMed  Google Scholar 

  42. P. C. Orban, D. Chui, and J. D. Marth, (1992). Tissue-and site-specific DNA recombination in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 89:6861–6865.

    PubMed  Google Scholar 

  43. R. D. Cardiff (1996). The biology of mammary transgenes: five rules. J. Mamm. Gland Biol. Neoplasia 1:61–73.

    Google Scholar 

  44. L. Hennighausen (1997). Molecular mechanisms of hormone controlled gene expression in the breast. Mol. Biol. Rep. 24:169–174.

    PubMed  Google Scholar 

  45. K. U. Wagner, R. W. Wall, L. St. Onge, P. Gruss, L. Garrett, T. Wynshaw-Boris, M. Li, P. A. Furth, and L. Hennighausen. Nucl. Acids Res. (in press).

  46. Y. Wang, L. A. Krushel, and G. M. Edelman (1996). Targeted DNA recombination in vivo using an adenovirus carrying the Cre recombinase gene. Proc. Natl. Acad. Sci. U.S.A. 93:3932–3936.

    PubMed  Google Scholar 

  47. Y. Kanegae, G. Lee, Y. Sato, et al. (1995). Efficient gene activation in mammalian cells using recombinant adenovirus expressing site-specific Cre recombinase. Nucl. Acids Res. 23:3816–3821.

    Google Scholar 

  48. K. Sakai, K. Mitani, and J. Miyazaki (1995). Efficient regulation of gene expression by adenovirus vector-mediated delivery of the Cre recombinase. BBRC 217:393–401.

    PubMed  Google Scholar 

  49. D. Medina (1996). The mammary gland: a unique organ for the study of development and tumorigenesis. J. Mam. Gland Biol. Neoplasia 1:5–19.

    Google Scholar 

  50. R. Feil, J. Brocard, B. Mascrez, M. LeMeur, D. Metzger, and P. Chambon (1996). Ligand-activated site-specific recombination in mice. Proc. Natl. Acad. Sci. U.S.A. 3:10887–10890.

    Google Scholar 

  51. R. Kuhn, F. Schwenk, M. Aguet, and K. Rajewsky (1995). Inducible gene targeting in mice. Science 269:1427–1429.

    PubMed  Google Scholar 

  52. M. C. Serre, B. R. Evans, H. Araki, Y. Oshima, and M. Jayaram 1992. Half-site recombinations mediated by yeast site-specific recombinases Flp and R. J. Mol. Biol. 225:621–642.

    PubMed  Google Scholar 

  53. G. Pan and P. D. Sadowski (1993). Identification of the functional domains of the Flp recombinase. Separation of the non-specific and specific DNA-binding, cleavage, and ligation domains. J. Biol. Chem. 268:22546–22551.

    PubMed  Google Scholar 

  54. S. Dymecki (1996). A modular set of Flp, FRT and lac Z fusion vectors for manipulating genes by site-specific recombination. Gene 171:197–201.

    PubMed  Google Scholar 

  55. S. Dymecki (1996). Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 93:6191–6196.

    PubMed  Google Scholar 

  56. C. Logie and A. F. Stewart (1995). Ligand-regulated site-specific recombination. Proc. Natl. Acad. Sci. U.S.A. 92:5940–5944.

    PubMed  Google Scholar 

  57. Li, X. Liu, G. Robinson, U. Bar-Peled, K.-U. Wagner, W.S. Young, L. Hennighausen and P. A. Furth (1997). Mammary derived signals activate programmed cell death during the first stage of mammary gland involution. Proc. Natl. Acad. Sci. U.S.A. 94:3425–3430.

    PubMed  Google Scholar 

  58. J. S. Thompson (1963). Transplantation of whole mammary glands in mice. Transplantation 1:526–534.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscilla A. Furth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furth, P.A. Conditional Control of Gene Expression in the Mammary Gland. J Mammary Gland Biol Neoplasia 2, 373–383 (1997). https://doi.org/10.1023/A:1026399329934

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026399329934

Navigation